Существует три важных характеристики конструкции распредвала, которые управляют кривой мощности двигателя: величина подъема клапанов, продолжительность открывания клапана и фазы газораспределителя распредвала. Подъем клапана измеряется в миллиметрах и представляет собой максимальное расстояние, на которое клапан отходит от седла. Продолжительность открывания клапанов — это отрезок времени, измеряемый в градусах поворота коленчатого вала.
Продолжительность можно измерить несколькими различными путями, но из-за того, что поток минимален при малом подъеме клапана, продолжительность обычно измеряется после того, как клапан поднялся от седла на малую величину, часто составляющую 0,5 или 1,2 мм. К примеру, конкретный распредвал может иметь продолжительность открывания в 250 град. поворота при подъеме в 1,27 мм. Таким образом, при использовании подъема толкателя в 1,27 мм в качестве точек начала и остановки подъема клапана, распредвал будет удерживать клапан открытым в течение 250 град. поворота коленчатого вала. Если продолжительность открывания клапана измеряется при нулевом подъеме (когда он находится у седла или только отходит от него), то продолжительность будет составлять 330 град. или более положения коленчатого вала в моменты, когда определенные клапаны открываются или закрываются, часто называются фазами газораспределения распределительного вала. К примеру, распредвал может открывать впускной клапан при 30 град. до ВМТ и закрывать его при 70 град. после НМТ.
Каждый из этих критериев конструкции связан с другими и модификация одного повлияет на то, как другие улучшат или ухудшат работу двигателя. Но, вообще говоря, увеличение подъема клапана и продолжительности его открывания или оптимизация фаз газораспределения увеличивают мощность. После небольшого увеличения типичных данных стандартного агрегата кривая мощности смещается выше в область оборотов. Когда продолжительность открывания и, в меньшей степени подъем увеличиваются еще больше, двигатель может быть даже неспособен работать на низких оборотах. «Гоночные » распредвалы с большой продолжительностью открывания часто имеют низкооборотный. предел «холостого хода» 2.000 об/мин или даже выше, Распредвалы с большой продолжительностью открывания можно сделать более «гражданскими » путем изменения времени открывания и закрывания клапанов, но жертвой компромисса станет максимальная мощность. Из трех главных характеристик, регулируемых распредвалом — продолжительности открывания клапанов, высоты подъема клапанов и фаз газораспределения — именно продолжительность открывания наиболее хорошо известна конструкторам форсированных двигателей. Это является следствием прямого влияния продолжительности открывания клапанов на мощность двигателя. Из общих соображений можно сказать, что чем дольше удерживаются открытыми клапаны (особенно впускной клапан), тем большая максимальная мощность двигателя будет в результате получена. Если продолжительность открывания клапана увеличивается более определенной величины, дополнительная максимальная мощность будет получена ценой качества работы двигателя на низких оборотах. Для гоночных двигателей максимальная мощность является практически единственной целью, но для «обычных » автомобилей с форсированными двигателями очень важными являются приемистость и крутящий момент на низких оборотах.
Увеличение высоты подъема клапана может быть полезным вкладом в увеличение мощности, т. к. оно может добавить мощность без существенного влияния на характеристики двигателя на низких оборотах. В теории решение может показаться простым: конструкция распредвала с короткой продолжительностью открывания клапанов для увеличения максимальной мощности. Теоретически это будет работать. Однако, механизмы привода клапанов не такие простые. В этом случае, высокие скорости движения клапанов, существенно уменьшают надежность двигателя.
Когда продолжительность открывания клапана уменьшается, то на перемещение клапана из закрытого положения (у седла) до полного подъема и возвращения обратно остается меньше времени. Когда продолжительность становиться еще короче, потребуются клапанные пружины с увеличенным усилием, и часто становится механически невозможным приводить в движение клапаны даже при относительно низких оборотах.
Таким образом, какое всё-таки значение высоты максимального подъема клапана является практичным и надежным? Распредвалы с величиной подъема, большей 12,7 мм, находятся в той области, которая непрактична для обычных двигателей (как минимум для двигателей со штангами в приводе клапанов). Распредвалы с продолжительностью такта впуска менее 2.850, сочетающейся с величиной подъема клапана более 12,7 мм, обеспечивают очень высокие скорости открывания и закрывания клапанов. Это создает нагрузки на механизм привода клапанов, что заметно уменьшает надежность кулачков распредвала, клапанных пружин, стержней клапанов, направляющих втулок клапанов. Хотя вал с высокими скоростями подъема клапанов может хорошо работать в начале эксплуатации, срок службы его и направляющих втулок клапанов может не превышать 20.000 км. К счастью, большинство фирм-производителей распредвалов конструируют валы так, что обеспечивается хороший компромисс между значениями подъема и продолжительности открывания клапанов, при значительном сроке службы и надежности.
Наиболее подробно обсуждаемые высота подъема клапанов и продолжительность такта впуска, не являются единственными характеристиками конструкции распредвала, которые влияют на выходную мощность двигателя. Моменты, в которые клапаны открываются и закрываются по отношению к положению распределительного вала, являются такими же важными параметрами для оптимизации характеристик двигателя. Эти фазы газораспределения распредвала указаны в таблице данных, прилагаемой к любому качественному распредвалу. Эта таблица данных числами и графически иллюстрирует угловые положения распредвала, когда впускные и выпускные клапаны открываются и закрываются. Они определяются точно в градусах поворота коленчатого вала перед (или после) ВМТ или НМТ.
Продолжительность открывания клапанов можно легко рассчитать из данных по фазам газораспределения, имеющихся в таблице. К примеру, для определения продолжительности открывания впускного клапана сложите момент открывания (в градусах перед ВМТ), момент закрывания (в градусах после НМТ) и 180 град. (продолжительность всего такта впуска). Если распредвал открывает впускной клапан в 27 град.. до ВМТ и закрывает его в 63 град. после НМТ, то продолжительность открывания клапана будет составлять 27 + 63 + 180 = 270 град.
Теперь давайте глубже погрузимся в соотношения фаз газораспределения распредвала и мощностью. Предположим, что у нас есть два распредвала, валы А и В. Оба вала имеют одинаковую продолжительность открывания клапана в 270 град., и они оба имеют одинаковую форму впускных и выпускных кулачков. Распредвалы такого типа обычно относят к конструкциям с «одним профилем». Однако распредвалы такого типа А и В не идентичны. Вал А имеет кулачки, расположенные так, что впускной клапан открывается за 27 град. до ВМТ и закрывается в 63 град. после НМТ, а выпускной клапан открывается за 71 град. до НМТ и закрывается в 19 град. после ВМТ. Для облегчения чтения можно представить эти данные по фазам газораспределения впускных и выпускных клапанов как 27 — 63 — 71 — 19. Вал В, соответственно, имеет фазы газораспределения 23 — 67 — 75 — 15. Вопрос состоит в следующем: если установить эти распредвалы на наш испытываемый двигатель, как они повлияют на мощность? Ответ будет таким: вал А, вероятно обеспечит большую мощность, но двигатель будет иметь более узкую кривую мощности и худшие характеристики в режимах холостого хода/частичного открывания дроссельной заслонки, чем вал В. Почему? Изменения в работе этих двух распредвалов, очевидно, не связаны с продолжительностью открывания клапанов или величиной их подъема: оба эти параметра остаются одинаковыми. Различия в кривых мощности являются результатом изменений в фазах газораспределения или, что более обще, в углах между центрами кулачков для каждого распредвала.
Угол между центрами кулачков является угловым смещением между центральной линией кулачка впускного клапана (часто называемогo просто впускным кулачком) и центральной линией кулачка выпускного клапана, (называемого выпускным кулачком).
Угол соответствующего цилиндра обычно измеряется в углах поворота распределительного вала, так как мы обсуждаем смещение кулачков друг относительно друга, которое является одним из нескольких моментов, когда характеристика распредвала указывается в градусах поворота распредвала, а не в градусах поворота коленчатого вала. Это не касается двигателей, использующих два распредвала в головке блока цилиндрoв.
Угол непосредственно влияет на перекрытие клапанов, т. е. на период, когда впускной и выпускной клапаны открыты одновременно. Перекрытие клапанов измеряется в углах поворота коленчатого вала. Когда угол между центрами кулачков уменьшается, то моменты закрывания выпускного клапана и открывания впускного клапана будут перекрываться больше. Следует помнить, что на перекрытие клапанов также влияет изменение продолжительности открывания: когда продолжительность открывания увеличивается, перекрытие клапанов тоже увеличивается.
Изменение высоты подъема клапана
Как известно, в 2005 году в Европе вступили в силу новые нормы по токсичности Евро-4, и моторостроители ищут способы удовлетворения этим требованиям их серийной продукции. Очередная перенастройка блока управления – существенно ухудшает мощностные параметры моторов и поэтому больше не приемлема. Переход на непосредственный впрыск бензина в цилиндры увеличивает выбросы окислов азота, и это обстоятельство требует установки на автомобили более совершенных нейтрализаторов. Эти устройства, чтобы их не вывели из строя примеси серы, должны иметь систему регенерации, которая существенно увеличивает их стоимость.
Применение системы изменения фаз газораспределения создает оптимальные условия работы двигателя только на полном открытии дроссельной заслонки. При других режимах работы двигателя поток воздуха ограничивает дроссельная заслонка, так как она определяет количество воздуха, поступающее в двигатель, на основании которого электронная система управления определяет угол опережения зажигания и количество подаваемого топлива в цилиндры двигателя.
Читайте также: Впускной коллектор ваз 2114 16 клапанов совместимость
При работе двигателя на режимах частичных нагрузок дроссельной заслонка создает во впускном трубопроводе разрежение, которое ухудшает наполнение цилиндров. Чтобы исключить из конструкции двигателя дроссельную заслонку, необходимо открывать впускной клапан только на время, необходимое, чтобы достичь нужного наполнения цилиндра горючей смесью.
Для решения этой задачи разработаны разные решения по открытию клапанов: механический привод, электрический привод и электрогидравлический привод.
Видео:подъем клапанов на классике. почему разницаСкачать
Механический привод. Представителем механического привода является система Valvetronic, применяемая на автомобилях БМВ, управляющая подъемом впускных клапанов и дозирующая поступающую в цилиндры рабочую смесь, что позволяет повысить экономичность двигателя без потерь мощности при удовлетворении норм Евро-4 и сохранении системы впрыска во впускной коллектор. Благодаря изменению хода клапана на высокой частоте вращения коленчатого вала достигается наилучшая вентиляция цилиндра и заполнение топливовоздушной смесью. При минимальной частоте вращения коленчатого вала ход клапана минимален. При этом уменьшается эффект перекрытия клапанов, благодаря чему расход топлива минимален. С увеличением частоты вращения коленчатого вала величина открытия клапанов увеличивается. При этом уменьшается сопротивление газовым потокам внутри цилиндра, скорость продувки и наполнения цилиндра топливовоздушной смесью возрастает. Кроме того, увеличивается действие инерционного эффекта. Топливовоздушная смесь внутри цилиндра запирается клапанами при гораздо большем давлении, ее плотность выше, чем при минимальной частоте вращения коленчатого вала. Благодаря изменяющемуся ходу клапана снижаются потери на трение относительно обычного привода клапанов, вследствие небольшого сопротивления при малом ходе клапана.
Общий вид системы показан на рис.1.2.12
Рис. 1.2.12 Система управления подъемом впускных клапанов двигателя Valvetronic БМВ:
1 – электродвигатель; 2 – эксцентриковый управляющий вал; 3 – рычаг с роликовой опорой; 4 – распределительный вал
Схематично система управления подъемом впускного клапана представлена на рис. 1.2.13
Рис. 1.2.13 Схема системы управления подъемом впускных клапанов двигателя Valvetronic БМВ:
1 – пружина рычага; 2 – электродвигатель; 3 – колесо червячной передачи; 4 – эксцентриковый управляющий вал; 5 – распределительный вал; 6 – рычаг с роликовой опорой; 7 – коромысло; 8 – клапан
Между распределительным валом 5 и каждой парой впускных клапанов 8 размещен дополнительный рычаг 6, который крепится на оси. Электродвигатель 2 через червячную передачу поворачивает эксцентриковый управляющий вал 4 на угол, определяемый электронной системой управления.
Клапана открываются непосредственно рычагами 6 с роликовыми опорами при воздействии на коромысла, опирающиеся с одной стороны на клапан, с другой стороны на гидравлический толкатель. Рычаги 6 посредством витых пружин 1 прижимаются к кулачку распределительного вала. Для снижения потерь на трения на осях рычага с роликовой опорой и коромысла установлены игольчатые роликовые подшипники.
При повороте эксцентрикового вала, эксцентрик набегая на рычаг 6, поворачивает его на определенный угол. Перемещая эксцентриковый вал, электродвигатель увеличивает или уменьшает плечо промежуточного рычага, тем самым, удлиняя или укорачивая ход впускных клапанов в соответствии с нагрузкой двигателя. Учитывая, что эксцентрик смещающий ось толкателя, имеет электрический привод, это позволяет задавать угол поворота нелинейным и программировать его индивидуально для каждого двигателя.
Величина открытия клапана изменяется от 0,20 мм (обеспечивая работу на холостом ходу и уменьшая нагрузку на клапан) до 9,7 мм, необходимых для получения максимальной мощности. Высота подъема клапанов, и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль управления подачей топлива, потенциометр которой передает сигнал в блок управления и при этом нет необходимости применять дроссельную заслонку для изменения количества подаваемого воздуха, хотя она и сохраняется в системе Valvetronic. Она необходима лишь при диагностике системы и на всех режимах работы двигателя заслонка всегда полностью открыта.
Для создания разрежения во впускном коллекторе, необходимом для работы усилителя тормозов, специально устанавливается вакуумный насос.
Площадь, занимаемая установкой механической системы высоты подъема клапана, на головке блока не изменяется, необходимо лишь дополнительное пространство для установки электродвигателя. Эксцентриковый вал, рычажный механизм, распределительный вал крепятся единым модулем на головке блока.
Выпускные клапана в приведенной системе открываются, как и в традиционных системах с помощью распределительного вала и коромысел. В настоящее время фирмой БМВ разработаны системы изменения высоты подъема и для выпускных клапанов.
Проведенные испытания показали, что средний расход топлива двигателем без дроссельной заслонки, на холостом ходу ниже на 18% по сравнению с обычным двигателем, а в наиболее ходовом диапазоне частоты вращения коленчатого вала при частичных нагрузках — 10%. В последнем случае между клапаном и седлом образуется зазор всего в 0,5…2 мм, и проходящий через него воздух полнее смешивается с бензином, образуя более качественную смесь.
Изменение высоты кулачка распределительного вала. Изменение высоты подъема клапана может осуществляться изменением высоты кулачка распределительного вала, воздействующего через коромысло на клапан. Такое решение под названием «VTEC-System» применяется фирмой «Хонда». Аббревиатура VTEC полностью расшифровывается следующим образом – Variable Valve Timing and Lift Electronic Control. В переводе на русский язык – это электронная система управления временем открытия и высотой подъема клапанов. Принципиальная схема этой системы для двигателя с четырьмя клапанами на каждый цилиндр и двумя распределительными валами показана на рис. 1.2.14
Рис. 1.2.14 Изменение высоты подъема клапана при разной высоте кулачка распределительного вала автомобилей Хонда:
Видео:РАСПРЕДВАЛЫ! ОСНОВНОЙ ТЮНИНГ АТМО МОТОРА.Скачать
а – положение кулачков распределительного вала при малой частоте вращения коленчатого вала; б – положение кулачков распределительного вала при большой частоте вращения коленчатого вала; 1 – запирающий плунжер в свободном состоянии; 2 – канал подачи масла; 3 – профиль кулачков для низкой частоты вращения коленчатого вала; 4 – основные коромысла; 5 – подача масла; 6 – профиль кулачков для высокой частоты вращения коленчатого вала; 7 – дополнительное коромысло; 8 – запирающий плунжер в рабочем состоянии; 9 – устройство для подпирания дополнительного коромысла
Переключающий механизм установлен на оси коромысел. Эта система позволяет изменять ход клапана в зависимости от частоты вращения коленчатого вала (высокая или низкая), а также выключать цилиндры из работы.
Распределительный вал, кроме двух кулачков небольшой высоты 3, имеет посреди них кулачок большой высоты 6 для привода клапанов каждого цилиндра с увеличенным ходом и продолжительностью открытия. Кулачок большой высоты воздействует на дополнительное коромысло 7, которое подпирается специальным пружинным устройством 9. Внутри оси распределительного вала имеется канал 2 подачи масла к запирающему плунжеру, состоящему из двух частей. Подача масла к деталям системы осуществляется по каналу, выполненному внутри распределительного вала. Для создания необходимого давления предусмотрен дополнительный масляный насос, запитывающийся от основной масляной магистрали. Запирающий плунжер состоит из двух поршней, которые могут передвигаться под давлением масла и соединять дополнительное коромысло 7 с основными коромыслами 4. При этом кулачок 6, имеющий большую высоту, чем кулачки 3, воздействуя на дополнительное коромысло 7, соединенное с основными коромыслами 4, открывая клапана на большую величину и увеличивая продолжительность подачи топливовоздушной смеси. При прекращении подачи масла запирающий плунжер под воздействием пружины возвращается в исходное состояние, и дополнительное коромысло отсоединяется от основных.
Переключение на разные частоты вращения коленчатого вала происходит по сигналу блока управления в зависимости от разряжения во впускном трубопроводе, нагрузки, скорости движения автомобиля и температуры двигателя.
Появившись в 1990 году, система VTEC дважды модернизировалась, и в настоящее время имеется ее третья серия, отличительная особенность которой в том, что оптимальное время и величина открытия впускных клапанов подбирается электроникой для трех режимов работы двигателя: на низкой, средней и высокой частоте вращения коленчатого вала двигателя.
В зоне низкой частоты вращения коленчатого вала система VTEC обеспечивает экономичный режим работы двигателя на обедненной топливно-воздушной смеси. На средней частоте вращения коленчатого вала величина открытия клапанов изменяется так, чтобы получить максимальный крутящий момент. При высокой частоте вращения коленчатого вала клапана открываются на максимальную величину для получения максимальной мощности. В настоящее время система VTEC может регулировать высоту подъема не только впускных, но и выпускных клапанов.
Подобная система применяется и для автомобилей Тойота (рис. 1.2.15).
Рис. 1.2.15 Изменение высоты подъема клапана автомобилей Тойота:
1 – запирающий плунжер; 2 – цилиндрический толкатель; 3 – скользящий толкатель; 4 – ролик
В этой системе запирающий плунжер 1 может приподнимать цилиндрический толкатель 2, на который в свою очередь опирается скользящий толкатель 3. При низких частотах вращения коленчатого вала, когда клапан должен быть открыт на небольшую высоту, кулачки распределительного вала воздействуют на ролик 4, связанный осью с коромыслом. При этом ход клапана небольшой. При увеличении частоты вращения коленчатого вала по сигналу блока управления масло подается к запирающему плунжеру. Плунжер, передвигаясь, заходит в паз цилиндрического толкателя и жестко связывает скользящий толкатель с коромыслом. Учитывая, что кулачок распределительного вала раньше начинает набегать на скользящий контакт, ход клапана увеличивается. При прекращении подачи масла к запирающему плунжеру, происходит рассоединение скользящего контакта и плунжера, и скользящий контакт работает вхолостую.
Читайте также: Устройство поплавкового клапана сливного бачка унитаза
Применение этой системы, в отличие от предыдущей позволяет использовать стандартный распределительный вал с кулачками, одинаковыми по высоте.
Фирма Порше в 2000 году впервые внедрила для своих двигателей с турбонаддувом чашечный толкатель и изменяемой высотой подъема клапана (рис. 1.2.16).
Рис. 1.2.16 Изменение высоты подъема клапанного механизма с чашечными толкателями автомобилей Порше:
1 – запирающий плунжер; 2 – внешний чашечный толкатель; 3 – внутренний чашечный толкатель; 4 – подшипник для фиксации толкателя от проворачивания; 5 – гидрокомпенсатор
Чашечный толкатель состоит из двух частей – внутреннего 3 и внешнего толкателя 4. На внутренний толкатель воздействует маленький кулачок распределительного вала, обеспечивающий ход клапана 3 мм. На внешний толкатель воздействуют два больших кулачка распределительного вала, обеспечивающих ход клапана 10 мм. Внутренний толкатель работает в том случае, когда запирающий плунжер 1 не соединяет оба толкателя. Если по сигналу блока управления масло подается к запирающему плунжеру, оба толкателя соединяются в одно целое и в этом случае начинает работать внешний толкатель, обеспечивая больший ход клапана на соответствующем режиме.
Система с запирающим плунжером, состоящим из двух частей применяется фирмой Даймлер-Крайслер для отключения цилиндров серийных 8-ми и 12-ти цилиндровых двигателей. Элемент этой системы без распределительного вала представлен на рис. 1.2.17
Видео:МОЩНОСТЬ мотора УВЕЛИЧИТСЯ если СДЕЛАТЬ так...Скачать
Рис. 1.2.17 Устройство выключения цилиндров:
1 – гидротолкатель; 2 – запирающий плунжер; 3 – основное коромысло; 4 – ролик; 5 – дополнительное коромысло; 6 – пружинный элемент
По сигналу электронного блока управления запирающий плунжер 2, может соединять или разъединять дополнительное коромысло 5 с основным 3. Если дополнительное коромысло будет соединено с основным, тогда распределительный вал, набегая на ролик 4, воздействует через запирающий плунжер на основное коромысло, и клапан будет открываться. В случае рассоединения запирающим плунжером обоих коромысел распределительный вал не может воздействовать на основное коромысло, и клапан открываться не будет, таким образом, цилиндр выключается из работы.
Электромагнитный привод клапанов. Улучшение наполнения цилиндров можно достигнуть без увеличения числа клапанов, удлинения фазы впуска и увеличения подъема клапана, применяя электромагнитный привод клапана EVA (Electromagnetic Valve Actuator). Такие системы в настоящее время интенсивно разрабатываются как в Европе, так и США.
Электромагнитный привод клапанов представляет собой подпружиненный клапан, который помещен между двумя электромагнитами, которые удерживают его в крайних положениях: закрытом или полностью открытом. Специальный датчик выдает блоку управления информацию о текущем положении клапана. Это необходимо для того, чтобы снизить до минимальной его скорость в момент посадки в седло.
Принцип работы системы показан на рис. 1.2.18. Как видно из схемы работы этой системы, в системе управления клапанами полностью отсутствует кулачковый вал со своим приводом, который заменен электромагнитами на каждый клапан.
Рис. 1.2.18. Электромеханический привод клапана:
1 – электромагнит открытия клапана; 2 – якорь; 3 – электромагнит закрытия клапана; 4 – клапанная пружина
Якорь электромагнита образует комбинацию с двумя пружинами для открытия и закрытия клапана. Когда к электромагнитам не подводится электрический ток, пружины клапана и электромагнита держат клапан в среднем положении, соответствующем половине хода клапана, при этом он полуоткрыт, что позволяет легко прокручивать коленчатый вал двигателя в начальной стадии пуска. При достижении необходимой частоты вращения от компьютера поступает сигнал и в верхний электромагнит открытия подается электрический ток, клапан закрывается. Одновременно осуществляется впрыск топлива.
При открытии клапана прерывается подача напряжения в верхний магнит. Энергия, накопленная в верхней пружине движет клапан вниз, однако ее недостаточно для полного открытия клапана, поэтому в конце движения клапана в нижний электромагнит подается ток повышенной силы (рис. 1.2.19).
Рис. 1.2.19 Изменение силы тока в электромагнитах
При открывании клапана прерывается подача напряжения в верхний электромагнит. Энергия, накопленная в верхней пружине, движет клапан вниз до тех пор, пока накопленная энергия полностью не израсходуется. Для возможности дальнейшего перемещения клапана вниз напряжение подается в нижний электромагнит и якорь, втягиваясь под действием магнитного поля, открывает клапан. При этом, учитывая потери энергии пружины в конце ее движения, в нижний электромагнит кратковременно подается ток повышенной силы, до тех пор пока клапан полностью не откроется.
Информация для компьютера поступает от датчика, расположенного на коленчатом валу и фиксирующего его угловое положение. Для каждого клапана компьютер определяет начало его открытия и закрытия, а значит и ход, в зависимости от положения коленчатого вала. Ход клапана может изменяться от нулевой величины до максимальной в зависимости от режима работы двигателя.
Система EVA разработана так, чтобы почти вся энергия, необходимая для перемещения клапана, находилась в пружинах. Единственным требованием, предъявляемым к электрической системе, является компенсация энергии демпфирования пружин и потерь на трение в направляющей клапана. Величина этого трения низкая, так как нет боковых сил, действующих на клапан. Электроэнергия необходима лишь только для того, чтобы использовать ее в непосредственной близости от той точки, где полностью израсходована накопленная энергия пружины. Здесь к.п.д. электромагнита должен быть наибольший, поэтому зазор между якорем и электромагнитом устанавливают минимальный.
Привод EVA осуществляет движение клапана за 2,42 мс и потребляет при этом 66 Вт на каждый клапан при частоте вращения 6000 мин- 1 .
Открытие и закрытие клапана производится в пределах долей градуса поворота коленчатого вала. Такая точность нужна при отсутствии дросселирования воздушного заряда на впуске.
EVA управляет перемещением клапана между крайними положениями так, чтобы обеспечить мягкую посадку клапана на седло, необходимую для повышения срока его службы.
Диаграмма перемещения клапана при частоте вращения 6250 об/мин показана на рис. 1.2.20.
Видео:Как снизить РАСХОД и УВЕЛИЧИТЬ МОЩНОСТЬ за пару минут!? / Проверка лайфхакаСкачать
Рис. 1.2.20.Диаграмма перемещения клапана электромагнитного привода
При этой частоте клапан полностью открыт на протяжении 270° поворота коленчатого вала. Кружком на рисунке показана зона мягкой посадки клапана. Когда до седла остается 0,25 мм, скорость перемещения клапана значительно уменьшается и, тем самым, осуществляется его мягкая посадка. Специальный датчик выдает блоку управления информацию о текущем положении клапана. Это необходимо, чтобы снизить до минимальной его скорость в момент касания седла. Достигается это за счет совместного действия как механической, так и электрической частей системы. Компьютер позволяет осуществлять перемещение клапана на необходимую высоту при любой частоте вращения, обеспечивая при этом максимальный расход топлива и получение соответственно максимально возможной мощности на этом режиме.
Для гарантии хорошей теплопередачи, особенно для выпускного клапана необходима достаточная сила для посадки. Недостаточная сила посадки клапана может привести к перегреву клапана. EVA имеет специальный механизм, гарантирующий силу посадки клапана. Этот механизм также автоматически компенсирует температурное расширение клапана и, с течением времени, износ седла клапана. Для предотвращения повреждения поршней в случае обрыва клапана в поршне предусматривается выемка.
Возможности системы практически ничем не ограничены: достаточно изменить программу управления клапанами, чтобы двигатель с четырьмя клапанами на цилиндр в доли секунды стал двух- или трехклапанным; можно выборочно отключать цилиндры, эффективно тормозить двигателем при любой частоте вращения коленчатого вала, на ходу изменять рабочий процесс и превращать четырехтактный двигатель в двухтактный или шести- , даже в восьмитактный (на режимах с частичной нагрузкой).
Фирма Renault предлагает несколько другую систему, в которой клапаны перемещаются между двумя пружинами, с соленоидами (рис. 1.2.21), которые обеспечивают необходимое время открытия клапанов, но потребляют столько электричества, сколько требуется для преодоления собственных механических потерь. В предлагаемой системе нет распределительного вала и его привода. Электрическая энергия экономится за счет того, что при работе системы электрическая энергия расходуется только в момент открытия клапана, а закрывается клапан пружиной. Управление системой осуществляется электронной системой управления. Мощность, необходимая для работы этой системы на холостом ходу и при малых нагрузках, составляет всего 300 Вт.
Рис. 1.2.21 Электромагнитный привод клапанов фирмы Renault
С помощью такой системы можно не только четко управлять временем открытия каждого клапана, но и обеспечивать получение максимальной мощности или максимального крутящего момента (или очень малой и экономичной частоты вращения коленчатого вала на холостом ходу). Система электромагнитного привода клапанов имеет и другие преимущества. Например, можно полностью часть цилиндров или переводить их на малую нагрузку, так что остальные будут работать более эффективно. Однако главное преимущество этой системы заключается в том, что время и степень открытия клапанов в любой момент времени могут быть оптимальными для работы двигателя, в зависимости от условий движения. Кроме этого, конструкция самого двигателя упрощается, потому что отсутствует обычный привод газораспределительного механизма: цепи, зубчатые ремни, механизм натяжения, шестерни и распределительные валы. При этом значительно упрощается конструкция головки блока цилиндров и исчезает потребность в подаче к ней смазочного масла, в связи с отсутствием дросселирования воздушного заряда во впускном коллекторе упрощается и его конструкция. В целом это приводит и к уменьшению размеров двигателя. В головке блока цилиндров исчезают обрабатываемые многочисленные гнезда и установочные поверхности. Все это сокращает ее массу на 30 %.
Читайте также: Регулировка клапанов камаз 65225
Применение системы EVA обеспечивает:
1) низкий уровень вредных выбросов за счет рационального и гибкого управления воздушно-топливной смесью и лучших процессов наполнения и продувки цилиндра.
2) улучшение топливной экономичности за счет оптимизации процессов в цилиндре и отсутствия дросселирования потока воздуха. EVA оптимизирует время-сечение клапана при различных условиях движения автомобиля, таких как крейсерская скорость, режим ускорения, холостой ход двигателя.
Топливная экономичность улучшается на 15 % за счет оптимизации процесса сгорания во всем диапазоне частот вращения, уменьшения насосных потерь и потерь на трение. При внедрении системы управления отключением цилиндров, что значительно упрощается при наличии системы EVA, топливная экономичность улучшается еще на 16 %. Суммарно можно ожидать уменьшения путевого расхода топлива на 31 %;
3) уменьшение потерь на трение. EVA непосредственно обеспечивает перемещение клапанов, что приводит к устранению всех нагрузок в подшипниках общепринятой системы газораспределения и уменьшает трение более чем на 90 % за счет исключения распределительного вала. Потери, имеющие место при установке системы EVA, почти полностью связаны с потерями от электрического (омического) нагревания катушек и не связаны с механическими потерями.
4) улучшение мощностных характеристик двигателя, которое происходит благодаря увеличению время-сечения клапанов. Выбор время-сечения клапана и фаз открытия и закрытия может быть оптимизирован для всего диапазона частот вращения и нагрузок, что расширяет диапазон повышенной мощности и крутящего момента по частоте вращения. При тех же времени открытия и высоте подъема определяющий параметр «время-сечение» будет больше, поскольку клапан открывается и закрывается значительно быстрее.
Привод EVA также продемонстрировал способность работать на высоких частотах вращения. Так, перемещение клапана на 8 мм система EVA осуществляла за 0,0025 с, что достаточно для поддержания частоты вращения двигателя до величины 9000 об/мин. Для большинства выпускаемых двигателей частота 7500 об/мин является предельной;
5) применение альтернативных топлив и получение многотопливного двигателя. Способность оптимизировать время-сечение и начало открытия клапана является идеальной для перехода к многотопливному двигателю. Применение EVA на двигателях делает возможным автоматически приспособить работу клапанов к самым разнообразным топливам, таким как бензин, дизельное топливо, природный газ, этанол, метанол, спирт;
6) уменьшение шума, вибрации и жесткости работы. Любой шум с приводом EVA локализируется в пределах клапана и поглощается крышкой на каждом клапане. При наличии системы EVA проблема заключается в исключении передачи вибрации на головку блока цилиндров от электромагнитных клапанов;
7) надежность. С точки зрения механики, EVA является очень простой системой, имеющей всего одну перемещающуюся деталь: клапан с непосредственно связанным с ним якорем. Отсутствуют любые нагруженные трущиеся пары, и, следовательно, в этой системе износ очень незначителен. Имеющиеся электронные блоки подобных конструкций и система зажигания с емкостной разгрузкой чрезвычайно надежны.
Видео:12 способов увеличить мощность двигателяСкачать
уменьшение стоимости очистки отработавших газов. Относительно непосредственного впрыска бензина в такой системе на необходимости применять дорогостоящую трехкомпонентную систему нейтрализации отработавших газов и нет необходимости подогревать нейтрализаторы при запуске двигателя при низких температурах, ввиду возможности быстрого прогрева нейтрализаторов.
Единственной и главной проблемой применения электромагнитного привода, управляемого электроникой, является обеспечение исполнительных устройств достаточной энергией и их большие размеры. По сравнению с обычным приводом клапанов мощность генератора при электромеханическом приводе клапанов должна быть повышена на 80%. Соленоиды должны открывать клапаны с той же скоростью, что и кулачки распределительного вала, а в этом случае они получаются большие и тяжелые. В действительности они будут такими, если их питать от 12-вольтовой электрической системы. Однако, в настоящее время производители легковых автомобилей должны перейти на напряжение бортовой сети 36 В, с генератором, обеспечивающим напряжение 42 вольта (современные генераторы выдают 14 вольт, снабжая систему напряжением 12 вольт). При увеличении напряжения в три раза электрический ток, необходимый для питания устройств управления клапанами, становится намного меньше, и размер соленоидов значительно уменьшается таким образом, что устройство может занимать место не больше, чем обычный механизм с двумя распределительными валами в головке и клапанными пружинами.
Гидравлический привод клапанов. Применение электромагнитного привода клапанов требует больших затрат электроэнергии на их открытие, поэтому немецкие производители двигателей предлагают открывать клапана с помощью гидравлики, а управлять гидравликой с помощью электроэнергии. В отличие от других типов открытия клапанов применение электрогидравлического привода клапанов позволяет отказаться не только от распределительного вала и дроссельной заслонки, но и от клапанных пружин. При применение этого типа клапанов, наряду с простым открытием-закрытием клапанов и ходом клапана можно изменять фазы газораспределения и их работу независимо для каждого цилиндра, снижая тем самым расход топлива и выброс токсичных веществ в отработавших газах и повысить мощность двигателя.
Общая схема электрогидравлического привода клапанов показана на рис. 1.2.22
Рис. 1.2.22 Схема электрогидравлического привода клапанов:
1 – насос высокого давления; 2 – линия высокого давления (50…200 кгс/см 2 ); 3 – клапан регулировки высокого давления; 4 – линия управляющего давления (5…20 кгс/см 2 ); 5 – блок электрогидравлического подъема клапана; 6 – регулятор подъема клапана; 7 – электромагнитный клапан на линии низкого давления; 8 – линия низкого давления ( менее 5 кгс/см 2 ); 9 – клапан механизма газораспределения; 10 – электромагнитный клапан на линии высокого давления; 11 – цилиндр; 12 – поршень
Каждый блок электрогидравлического подъема клапана содержит на каждый клапан механизма газораспределения:
— электромагнитный клапан 10 на линии высокого давления обесточенный в закрытом положении;
— электромагнитный клапан 7 на линии низкого давления обесточенный в открытом положении;
- регулятор подъема клапана 6;
— двухступенчатый регулируемый привод поршня 12 для открытия клапана;
- гидравлический компенсатор линейного расширения;
Принцип действия системы заключается в следующем. Насос высокого давления создает давление масла в системе до 200 кгс/см 2 . Электромагнитный редукционный клапан 3 регулирует давление в линии высокого давления в пределах 50…200 кгс/см 2 по сигналу блока управления, в зависимости от частоты вращения коленчатого вала, нагрузки, температуры и т. д. Этот клапан регулирует переменный ход высоты подъема клапана одновременно для всех клапанов сразу. Если на электромагнитный клапан 10 подается напряжение, он открывается и масло из линии высокого давления поступает в цилиндр сверху поршня. Электромагнитный клапан на линии низкого давления 7 в это время закрыт, так как на него не подается напряжение. Поршень, воздействуя на клапан механизма газораспределения перемещает его вниз, таким образом клапан открывается. В зависимости от режима работы двигателя срабатывает регулятор подъема клапана 6, изменяя скорость посадки всех клапанов одновременно. Изменение фаз газораспределения клапанов происходит при изменении времени подачи напряжения на электромагнитный клапан на линии высокого давления 10.
При обесточивании электромагнитного клапана 10 и масло из линии высокого давления поступает в цилиндр снизу поршня. Поршень, воздействуя на клапан механизма газораспределения перемещает его вверх, таким образом клапан закрывается. Масло из пространства над поршнем подается в линию низкого давления и затем снова подается к насосу.
Для того чтобы увеличить силу открытия клапана и одновременно снизить потребление энергии при большом ходе открытия клапана, применяются поршни, состоящие из двух частей. При среднем давлении около 100 кгс/см 2 и относительно малом времени срабатывания полный ход клапана составляет 1 мм, а скорость посадки колеблется от 0.05 до 0,5 м/с.
Электрогидравлический привод клапанов связан с системой циркуляции масла двигателя. Общими с системой смазки двигателя являются поддон картера двигателя, масляный насос для подачи масла в систему смазки двигателя и к насосу высокого давления привода клапанов, фильтр очистки масла и магистраль слива масла из головки блока. К используемому маслу, единому для общей системы смазки и привода клапанов предъявляются высокие требования по качеству при длительной эксплуатации и вязкостным характеристикам. Поэтому в систему смазки должно заливаться масло типа 0W40. Для отслеживания вязкости при эксплуатации двигателя предусмотрен специальный датчик, посылающий сигнал о потере вязкости.
Блоки электрогидравлического подъема клапана могут устанавливаться и монтироваться независимо друг от друга. Выполненная с большой точностью плоская поверхность блока позволяет обеспечивать необходимую гидравлическую плотность соединения блока с корпусом двигателя.
Более простое решение гидравлического привода клапанов предлагает фирма Фиат (рис. 1.2.23). Впускной клапан здесь открывается с помощью распределительного вала и гидравлического передающего механизма.
Видео:Ноу-Хау. Увеличение мощности автомобиля в два раза.Скачать
При вращении распределительного вала 3, кулачок набегает на плунжерный толкатель 4, создавая давление масла в цилиндре толкателя, которое затем передается на поршень 2, воздействующий на впускной клапан. Давление в цилиндре толкателя может меняться в зависимости от степени открытия электромагнитного клапана 6, управляющего золотником. Этим регулируется ход клапана и изменение режима работы двигателя может осуществляться без дроссельной заслонки.
Рис. 1.2.23 Электрогидравлический привод впускных клапанов фирмы Фиат:
1 – впускной клапан; 2 – поршень; 3 – распределительный вал; 4 – плунжерный толкатель; 5 – масляная камера цилиндра плунжерного толкателя; 6 – электромагнитный клапан; 7 – масляный резервуар
Масло через сообщающийся канал может передаваться в небольшой масляный резервуар 7. Электромагнитный клапан 6 рассчитан на экстремально быстрое включение.
💥 Видео
Основы тюнинга двигателя: Пропускная способность клапан-седло и подъём клапанаСкачать
Клапана и Пружины! Вес, Жесткость и Седло Клапана!Скачать
Как поднять компрессиюСкачать
Распредвалы ЗМЗ 406/405/409: максимальная мощность или низовой момент?Скачать
ТЮНИНГ 16 КЛ БЕЗ ВЛОЖЕНИЙСкачать
⚫ 10 способов УВЕЛИЧИТЬ МОЩНОСТЬ НА СВОЕМ АВТОМОБИЛЕСкачать
Зачем льют масло в цилиндры? Плохая компрессия в цилиндрах клапана или поршневые кольцаСкачать
Фазы на распредвалах, какое перекрытие выставить? Что такое "фаза распредвала"?Скачать
Как просто поднять компрессию в цилиндрах, без разборки мотора!Скачать
Как увеличить мощность двигателяСкачать
Дроссель для регулирования скорости потока. Дроссель с обратным клапаномСкачать
Увеличение мощности двигателя без турбины! Все про коллектор с изменяемой геометрией.Скачать
Бюджетный, но существенный тюнинг ваз 2106. Увеличение объёма до 1.7Скачать
ПОДНЯЛИ КОМПРЕССИЮ ДО 20 ОЧКОВ - ЗАЧЕМ?Скачать