Как узнать диаметр цилиндра по высоте

Как узнать диаметр цилиндра по высоте

Авто помощник

Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD

Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD

Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD

Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD

Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2

Содержание
  1. Высота и диагональ цилиндра
  2. Свойства
  3. Радиус и высота цилиндра
  4. Свойства
  5. Калькулятор объема цилиндра в м3
  6. Объем цилиндра по высоте и радиусу
  7. Объём цилиндра через площадь основания и высоту
  8. Где применяется программа
  9. Диаметр и диагональ цилиндра
  10. Свойства
  11. Как посчитать объем цилиндра
  12. Онлайн калькулятор
  13. Зная радиус r и высоту h
  14. Формула
  15. Пример
  16. Зная диаметр d и высоту h
  17. Формула
  18. Пример
  19. Зная площадь основания So и высоту h
  20. Формула
  21. Пример
  22. Зная площадь боковой поверхности Sb и высоту h
  23. Формула
  24. Пример
  25. Объем цилиндра
  26. Объем правильного цилиндра через радиус и высоту цилиндра
  27. Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра
  28. Формулы и калькулятор для вычисления объема цилиндра через диаметр основания
  29. Объем цилиндрической полости
  30. Поверхности цилиндра
  31. Сечения цилиндра
  32. Что такое объем
  33. 🎬 Видео

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Высота и диагональ цилиндра

Как узнать диаметр цилиндра по высоте

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Свойства

Зная высоту и диагональ цилиндра, найти диаметр окружности в его основании не составляет труда. Для этого необходимо провести диагональ таким образом, чтобы получить с вышеуказанными параметрами прямоугольный треугольник, и далее вычислить неизвестное звено по теореме Пифагора. (рис.25.1) D=√(d^2-h^2 )

Зная диаметр, можно подставив полученное выражение вместо него в следующие формулы, найти радиус и периметр окружности в основании через диагональ и высоту цилиндра. r=D/2=√(d^2-h^2 )/2 P=πD=π√(d^2-h^2 )

Площадь боковой и полной поверхности вычисляются с непосредственным участием радиуса цилиндра или соответствующего ему выражения. Поэтому чтобы найти площади цилиндра через высоту и диагональ, нужно совершить следующие преобразования. S_(б.п.)=hP=2πrh=2π √(d^2-h^2 )/2 h=πh√(d^2-h^2 ) S_(п.п.)=S_(б.п.)+2S_(осн.)=πh√(d^2-h^2 )+π(d^2-h^2 )

Объем цилиндра вычисляется как произведение площади его основания на высоту. Чтобы найти объем цилиндра через высоту и диагональ цилиндра, нужно вместо площади основания подставить произведение числа π на разность квадратов диагонали и высоты. V=πh(d^2-h^2 )

Преследуя цель вычислить радиус вписанной или описанной окружности цилиндра через диагональ и высоту, необходимо помнить о том, что в цилиндр можно вписать окружность, только если радиус цилиндра равен его высоте. Поэтому радиус вписанной окружности будет равен половине высоты, а радиус описанной окружности – половине диагонали. (рис. 25.2,25.3) r_1=h/2 R=d/2

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Радиус и высота цилиндра

Как узнать диаметр цилиндра по высоте

Видео:Объём цилиндраСкачать

Объём цилиндра

Свойства

Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr

Читайте также: Ключевой цилиндр bussare снд 3 60 tr chrome хром

Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)

Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h

Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )

В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Калькулятор объема цилиндра в м3

Цилиндр – это объемное тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают. Цилиндр (от греческого «kulindros» — ролик, каток) относится к основным геометрическим фигурам. В элементарных математических трактовках, он определяется как трехмерное тело. Объем цилиндра – один из базовых параметров, который необходимо уметь вычислять каждому человеку. Формула применяется во многих сферах промышленности, а также в строительстве, архитектуре, механике, программировании.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Объем цилиндра по высоте и радиусу

Как узнать диаметр цилиндра по высоте

Узнать объем полой фигуры можно моментально, воспользовавшись удобной онлайн-программой. Сервис позволяет за секунды вычислить параметры тела и получить результаты в кубических сантиметрах, метрах, литрах. Расчет производится по двум математическим формулам:

    По высоте и радиусу: V = S х h.

Где V — объем, S — площадь, h — высота. Чтобы рассчитать объем необходимо площадь основания тела умножить на h. Следовательно, для этого необходимо знать две переменные.

Объём по площади основания и высоте: V = ∏ х R 2 х h

R – радиус, возведенный в квадрат. От первой формулы, расчет отличается тем, что сначала необходимо найти значение радиуса. Для этого диаметр делится на 2 или применяется формула S/2 х ∏ х H. ∏ — константа 3,14 (отношение длины окружности к диаметру).

Видео:Геометрия Задача про монаха Найти диаметр цилиндраСкачать

Геометрия Задача про монаха Найти диаметр цилиндра

Объём цилиндра через площадь основания и высоту

Как узнать диаметр цилиндра по высоте

Программа позволяет определить объем тела по обеим формулам. Для этого необходимо только подставить цифры в соответствующие строки и нажать кнопку рассчитать. Пошаговая инструкция вычисления базовых показателей фигуры на калькуляторе по высоте и радиусу:

  • в графе «h» ввести длину заданной фигуры, рядом выбрать метрику – в миллиметрах, сантиметрах, метрах;
  • в строке «r» ввести радиус тела и выбрать меру длины (мм, см, м);
  • в графе «Результат» определить, в чем будет выведен V – кубах, литрах.

Например, длина фигуры составляет 1,6 метра, радиус 25 сантиметров. Объем равен 314.2 литров, 314200 куб. см или 0.314 куб. м. Результат выводится моментально, с точностью до тысячной. Правильность вычисления зависит только от достоверности исходных данных.

Где применяется программа

Сервис разработана для всех пользователей, чья профессиональная деятельность предполагает решение математических задач. Калькулятор будет полезен школьникам 5-9 классов, учащимся 11 классов в подготовительном процессе к ЕГЭ и контрольным срезам, а также родителям для проверки правильности решения задач.

С помощью сервиса можно решить типичные тестовые задания школьной программы, подставляя известные значения и не забывая выставлять метрические параметры (в кубических сантиметрах, кубометрах, миллиметрах, литрах). Например:

Читайте также: Мелодии зарубежного экрана цилиндр

    Дан цилиндр, с площадью основания 58,3 см 2 и высотой 7 см. Чтобы посчитать V следует воспользоваться расчетом через площадь и высоту.

Решение: V = 58,3 см 2 х 7 см = 408.1 см³ или 0.408 л.

Вычисление: перед использованием программы следует определить радиус основания – 16см/2 = 8 см. Затем значения подставить в нужные поля. Расчет производится на основании формулы V = 3,14 х 8 2 х 11 см = 2211.968 см³.

Следует учитывать, что параметры полого горизонтального, наклонного, косого, кругового, равностороннего цилиндров вычисляются с использованием дополнительных формул.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Диаметр и диагональ цилиндра

Как узнать диаметр цилиндра по высоте

Видео:ЕГЭ|Задание 3 - Цилиндр, конус и шарСкачать

ЕГЭ|Задание 3 - Цилиндр, конус и шар

Свойства

Зная диаметр цилиндра, можно вычислить радиус цилиндра и периметр окружности цилиндра, которая представляет собой его основание. Радиус будет равен одной второй диаметра, а периметр окружности – произведению диаметра на число π. r=D/2 P=πD

Первое, что можно вычислить через диаметр и диагональ цилиндра – это его высота. Так как высота непосредственно связана со всеми остальными параметрами цилиндра, такими как площадь, объем и прочие, то она является необходимым звеном для геометрического калькулятора цилиндра. (рис.25.1) h=√(d^2-D^2 )

Площадь боковой поверхности цилиндра равна произведению высоты на длину окружности в основании цилиндра, таким образом, раскрывая эту формулу, получаем, что площадь боковой поверхности равна произведению числа π и диаметра на квадратный корень из разности квадратов диагонали и диаметра. S_(б.п.)=hP=πD√(d^2-D^2 )

Площадь полной поверхности цилиндра представлена площадью боковой поверхности в сумме с площадью двух оснований в виде окружностей. S_(п.п.)=S_(б.п.)+2S_(осн.)=πD(√(d^2-D^2 )+D)

Чтобы найти объем цилиндра через диаметр и диагональ нужно представить высоту цилиндра в виде квадратного корня разности из квадратов диагонали и диаметра, а затем умножить это на площадь основания, состоящую из числа π и четверти квадрата диаметра. V=(πD^2 h)/4=(πD^2 √(d^2-D^2 ))/4

Чтобы в цилиндр можно было вписать сферу, нужно чтобы диаметр цилиндра был равен его высоте, тогда сфера будет соприкасаться со всеми гранями цилиндра и ее радиус будет равен радиусу цилиндра, то есть половине его диаметра. (рис. 25.2) r_1=r=D/2

Чтобы вокруг цилиндра можно было описать сферу, нужно точно так же чтобы диаметр цилиндра совпадал с высотой, и радиус описанной сферы будет равен половине диагонали цилиндра. R=d/2

Видео:+Как найти длину окружностиСкачать

+Как найти длину окружности

Как посчитать объем цилиндра

Видео:найти высоту цилиндраСкачать

найти высоту цилиндра

Онлайн калькулятор

Как узнать диаметр цилиндра по высоте

Найти чему равен объем цилиндра (V) можно зная (либо-либо):

  • радиус r и высоту h цилиндра
  • диаметр d и высоту h цилиндра
  • площадь основания So и высоту h цилиндра
  • площадь боковой поверхности Sb и высоту h цилиндра

Подставьте значения в соответствующие поля и получите результат.

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Зная площадь основания So и высоту h

Чему равен объем цилиндра V если известны его площадь основания So и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:

Зная площадь боковой поверхности Sb и высоту h

Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:

V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Объем цилиндра

Объем цилиндра, формулы и калькулятор для вычисления объема цилиндра и площади его поверхностей, а также необходимая теория о характеристиках цилиндра.

Читайте также: Площадь поверхности цилиндра подборка задач

Видео:Объем цилиндраСкачать

Объем цилиндра

Объем правильного цилиндра через радиус и высоту цилиндра

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра

Как узнать диаметр цилиндра по высоте

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Формулы и калькулятор для вычисления объема цилиндра через диаметр основания

Как узнать диаметр цилиндра по высоте

Видео:Как измерить цилиндр рулеткой!?Скачать

Как измерить цилиндр рулеткой!?

Объем цилиндрической полости

Как узнать диаметр цилиндра по высоте

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

Поверхности цилиндра

Как узнать диаметр цилиндра по высоте

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Сечения цилиндра

Как узнать диаметр цилиндра по высоте

Как узнать диаметр цилиндра по высоте

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура .

Как узнать диаметр цилиндра по высоте

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Как узнать диаметр цилиндра по высоте

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг .

Как узнать диаметр цилиндра по высоте

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс .

Как узнать диаметр цилиндра по высоте

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса .

Видео:Измерение штангенциркулем (job4man.ru).MOVСкачать

Измерение штангенциркулем (job4man.ru).MOV

Что такое объем

Объем тела (геометрической фигуры) – это количественная характеристика, характеризующая количество пространства, занимаемого телом. Объем выражается в кубических единицах измерения, например: мм 3 , см 3 , мл 3 .

Формула вычисления объема цилиндра часто применяются при расчете массы различных цилиндров, например, прутков, заготовок и т.п. Для вычисления массы, необходимо вычисленный объем цилиндра умножить на плотность материала из которого цилиндр.

Так же, вычислить объём цилиндра иногда требуется для определения полости в виде цилиндра (цилиндрическая полость). В данном случае объём полости будет равен объёму цилиндра, который полностью занимает эту полость.

Объем и площадь других видов цилиндров рассмотрен в статьях:

🎬 Видео

Вычисление объёма цилиндраСкачать

Вычисление объёма цилиндра
Поделиться или сохранить к себе:
Технарь знаток