Как узнать размер клапана

Авто помощник

Параметры и характеристики клапанов для трубопроводов с различным давлением и условными проходами определяются техническими условиями ГОСТ 3326-86, ГОСТ 16587-71, ГОСТ 24856-2014.

Основные размеры клапанов в соответствии с положениями ГОСТ 3326-86 (Клапаны запорные, клапаны и затворы обратные. Строительные длины), ГОСТ 16587-71 (Клапаны предохранительные, регулирующие и регуляторы давления. Строительные длины), ГОСТ 24856-2014 (Арматура трубопроводная):

  • проход условный (Dy);
  • длина (L, L1);
  • высота в закрытом положении (H);
  • высота (H1, Н2);
  • трубная резьба/диаметр трубы (G(R)/d);
  • диаметр маховика (Do).

Единицы измерения параметров клапанов для трубопроводов – миллиметры (мм) и дюймы (in).

Присоединение клапанов к трубопроводам может быть следующее:

  • муфтовое: на изделии имеется внутренняя резьба и его накручивают на ответную резьбу трубопровода;
  • штуцерное: на изделии имеется патрубок с наружной резьбой, к трубе клапан крепится накидной гайкой;
  • фланцевое: клапан оснащён фланцевой парой, модель крепится к ответным фланцам трубопровода болтами или шпильками, такой тип присоединения наиболее распространён в промышленности;
  • сварное: арматура приваривается, этот вид соединения требуется там, где герметичность и надежность других видов соединений недостаточна, например: при токсичных, агрессивных, радиоактивных рабочих средах;
  • цапковое: изделие оснащено соединительными патрубками с резьбой и буртиком, торец трубопровода, также имеющий буртик, накидной гайкой прижимается к торцу вентиля, пример – присоединение шланга к пожарному гидранту.

Важно: клапаны по принципу работы классифицируются на регулирующие, обратные, предохранительные, редукционные, балансировочные, гидроклапаны, игольчатые.

Материалы изготовления корпусных деталей клапанов: сталь, чугун, латунь, бронза.

Содержание
  1. Как подобрать типоразмер регулирующего клапана
  2. Определение пропускной способности клапана
  3. Условный диаметр клапана
  4. Условное давление
  5. Риск возникновения кавитации
  6. Уровень шума
  7. Допустимый перепад давления на клапане
  8. Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru
  9. Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru
  10. 1. Типоразмер — условный диаметр — выбор типоразмера — примитивная оценка минимального диаметра трубопровода
  11. 2. Оценка необходимой прочности клапана. Условное давление — выбор прочностной характеристики.
  12. Таблицы зависимости максимального рабочего давления PN6, PN10, PN16, PN25, PN40, PN63, PN100. PN400 от температуры для трубопроводной арматуры из чугуна, углеродистой стали и нержавеющей стали. Влияние температуры на максимальное рабочее давление. Давление/Температура/Материал.
  13. 3. Применимость материалов конструкций и уплотнений на данной рабочей среде.
  14. 4. Кавитация как риск, оценка вероятности возникновения кавитации в клапане.
  15. 5. Уровень шума, риски возникновения шума без кавитации. Риски резонансов.
  16. 🔥 Видео

Видео:А гнет ли ваш мотор клапаны?Как узнать это без снятия головки?Скачать

А гнет ли ваш мотор клапаны?Как узнать это без снятия головки?

Как подобрать типоразмер регулирующего клапана

Встречали в описании регуляторов давлений следующую рекомендацию: «Не следует подбирать типоразмер клапана по диаметру трубопровода, используйте значение Kvs»? Эта надпись есть практически в любой технической документации на регулирующие клапаны, а также сайтах компаний, занимающихся их продажей.

Как узнать размер клапана

Вот только, что это за значение Kvs и достаточно ли его для подбора регулятора, практически никто не объясняет. Эта статья поможет вам разобраться, как правильно рассчитать типоразмер любого регулирующего клапана.

В большинстве случаев подобрать регулятор давления под конкретное применение можно без привлечения специалистов. Точный расчет параметров арматуры потребуется для систем, где необходимо высокое качество регулирования или есть особые требования к ее работе, например, ограничения по уровню шума.

Основным параметром, по которому выбирается регулятор давления, является его пропускная способность или то самое значение Kvs. Как его рассчитать и что еще нужно учесть при выборе регулирующего клапана расскажет Андрей Шахтарин, директор компании «КВиП».

Видео:Правильный замер износа направляющих втулок клапанов 1.8TSI 2.0TFSIСкачать

Правильный замер износа направляющих втулок клапанов 1.8TSI 2.0TFSI

Определение пропускной способности клапана

Kvs, которая указывается в технической документации регулятора давления, — это пропускная способность полностью открытого клапана. Производители обычно указывают диапазон значений Kvs min— Kvs max, в котором работает устройство. Ваша задача определить необходимую пропускную способность клапана, при которой на заданном расходе будет обеспечено необходимое понижение давления пара, газа или жидкости при его прохождении.

Для каждого типа теплоносителя используется своя формула, учитывающая физические характеристики рабочей среды и перепад давления на входе и выходе:

P1 — давление на входе регулятора, бар;

P2 — давление на выходе регулятора, бар;

t1 — температура среды на входе, oC;

Q — расход для жидкости, м 3 /ч;

QN — расход для газов при нормальных условиях, нм 3 /ч;

G — расход для водяного пара, кг/ч;

ρ — плотность жидкости, кг/м 3 ;

pN — плотность газов при нормальных условиях, кг/нм 3 .

При расчетах учитывайте, что в формуле используется избыточное давление.

Расчетная Kv не учитывает все факторы, влияющие на работу устройства, так что про запас к полученному значению рекомендуется добавить 30%. Поэтому Kv умножаем на коэффициент 1,3 и только после этого подбираем клапан с самым близким значением Kvs max.

Читайте также: Пружины клапанов для ваз 2112 усиленная

Однако на этом подбор регулятора давления не заканчивается. Рекомендуется учесть еще несколько показателей, если вы хотите, чтобы:

технологические процессы регулировались более точно;

клапан во время работы не шумел и не «хлопал»;

при эксплуатации регулятора не было особых проблем с кавитацией и, как следствие, эрозионным износом его элементов;

повысилась безопасность производственных процессов;

сократились расходы на техобслуживание системы.

Для нормальной эксплуатации регулирующего клапана важны следующие факторы.

Условный диаметр клапана

Помните рекомендацию в начале статьи? Она рабочая — регуляторы давления действительно никогда не подбираются по диаметру трубопровода. Однако придется рассчитать условные параметры подводящей линии. Особенно это касается редукционного клапана, который обязательно устанавливается с обвязкой (об этом мы писали в этой статье). Для определения диаметра используем следующую формулу:

w — рекомендуемая скорость потока среды, м/c;

Q — рабочий объемный расход среды м 3 /ч;

d — диаметр трубопровода, м.

Регулятор может иметь диаметр на одну-две ступени меньше полученного значения. Если подобрать подходящий регулирующий клапан нет возможности, допустимо выбрать модель с более низкой пропускной способностью Kvs.

Условное давление

Этот параметр определяет допустимое рабочее давление для арматуры при нормальной температуре (20 o C). При нагреве механические свойства и эксплуатационные характеристики конструкционных материалов снижаются. Поэтому реальное допустимое давление для арматуры будет ниже. Насколько измениться значение зависит от материала изготовления клапана. В приведенной таблице приведена зависимость максимального рабочего давления от температуры для серого чугуна, углеродистой и нержавеющей стали.

Риск возникновения кавитации

При больших перепадах давления это одна из самых больших проблем, приводящая к быстрому выходу из строя клапана. Особенно сильно эффект проявляется при использовании регуляторов давления пара после себя. Проверить возможность возникновения кавитации можно по формуле:

P1 – давление на входе регулятора, бар;

∆P – перепад давления на клапане, бар.

Кавитация возникнет, если условие соблюдается.

Уровень шума

Регулирующий клапан будет шуметь и хлопать, если скорость среды, проходящей по трубопроводам будет выше рекомендуемой. Рассчитать фактическую скорость можно по формуле:

w – скорость потока среды, м/c;

Q – рабочий объемный расход среды м 3 /ч;

d – диаметр трубопровода, м.

Рекомендуемые скорости для всех типов сред приведены в таблице.

Снизить уровень шума можно, установив клапан в специальном исполнении или смонтировав виброкомпенсаторы на участках до и после регулятора.

Допустимый перепад давления на клапане

Для ряда регуляторов давления пара после себя ограничено отношение входного давления к выходному, так как при превышении перепада давления клапан не сможет закрыться. При выборе такого устройства можно не беспокоиться о кавитации — ограничение по этому параметру ее полностью исключает.

Соблюдение перечисленных рекомендаций поможет вам выбрать оптимальную модель регулирующего клапана, который будет не только эффективно, но и долго работать. Также вы можете обратиться за помощью к нашим специалистам — мы ответим на все ваши вопросы и поможем подобрать подходящий регулятор. Связаться с нами можно любым удобным способом.

Видео:КЛАПАНА двигателя. Как отличить ВПУСКИНЫЕ и ВЫПУСКНЫЕ. Как найти ПОДДЕЛКУ клапанов двигателяСкачать

КЛАПАНА двигателя. Как отличить ВПУСКИНЫЕ и ВЫПУСКНЫЕ. Как найти ПОДДЕЛКУ клапанов двигателя

Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru

Видео:как притереть клапан и проверить качество притиркиСкачать

как притереть клапан и проверить качество притирки

Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru

Читайте также: Solaris прокладка крышки клапанов

Далее в обязательном порядке выбираем — проверяем (подробные пояснения даны далее — ниже):

  1. условный диаметр DN = присоединительный размер клапана, (перейти)
  2. условное давление PN = прочностная характеристика клапана, (перейти)
  3. применимость материалов и уплотнений — температурная и химическая, (перейти)
  4. вероятность возникновения кавитации = вероятность локального падения давления внутри клапана ниже уровня давления кипения при данной температуре, (перейти)
  5. уровень шума — комфорт в эксплуатации; (перейти)
  6. диапазон регулирования + допустимые отношения входного давления к выходному или допустимый перепад давления на клапане. (перейти)

1. Типоразмер — условный диаметр — выбор типоразмера — примитивная оценка минимального диаметра трубопровода

Нет никакакого смысла выбирать регулирующую арматуру по типоразмеру (диаметру) трубопровода, хотя тип присоединения трубопроводной арматуры может быть важен на практике. При этом, выбор диаметра трубопровода до и после клапана является важной задачей корректной обвязки и комплектации системы, включающей регулинующий клапан. Очень часто условный диаметр DN клапана оказывается меньше условного диаметра трубопровода, на котором он установлен. На практике допустимо выбирать клапан с условным диаметром меньше условного диаметра трубопровода на 1-2 типоразмера, уделяя внимание рискам кавитации, шума и не забывая про прямые участки до и после регулятора.

2. Оценка необходимой прочности клапана. Условное давление — выбор прочностной характеристики.

Условное давление (номинальное давление) PN (устаревшее — Ру) является стандартизованным параметром трубопроводной арматуры, определяющим ее прочность. Существуют общепризнанные соответствия между материалом, рабочим давленим и рабочей температурой. Условное давление соответствует допустимому рабочему давлению при температуре 20 о С на воде. Очевидно, что с ростом температуры механические свойства любых конструкционных материалов обычно ухудшаются, поэтому чем выше рабочая температура, тем ниже максимальное рабочее давление при одном и том же значении условного давления.

Таблицы зависимости максимального рабочего давления PN6, PN10, PN16, PN25, PN40, PN63, PN100. PN400 от температуры для трубопроводной арматуры из чугуна, углеродистой стали и нержавеющей стали. Влияние температуры на максимальное рабочее давление. Давление/Температура/Материал.

Условное давление трубопроводной арматуры PN — наибольшее избыточное = приборное рабочее давление при температуре 20 °С, при котором обеспечивается заданный срок службы (ресурс) корпусных деталей арматуры. Максимальное рабочее давление — наибольшее избыточное давление, при котором возможна длительная эксплуатация арматуры при рабочей температуре (ГОСТ 24856). Влияние температуры на максимальное рабочее давление кранов, клапанов, задвижек и т.п. представлено в таблицах:

Таблица 1. Серый чугун, высокопрочный чугунвлияние температуры на максимальное рабочее давление трубопроводной арматуры

Таблица 2. Углеродистая стальвлияние температуры на максимальное рабочее давление трубопроводной арматуры

Таблица 3. Нержавеющая стальвлияние температуры на максимальное рабочее давление трубопроводной арматуры

3. Применимость материалов конструкций и уплотнений на данной рабочей среде.

Как известно, критерием истины является практика. В нашем случае — выбор материала определяет опыт (сын ошибок трубных). По ссылке ниже — наш скромный практический опыт, который предлагаем использовать и Вам. Помните, что лучше всего использовать те комбинации материалов, которые уже зарекомендовали себя на этом применении ранее, а не теоретические знания.

  • Справочно: Подробный обзор: Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость, а именно:
    • Таблица химической стойкости материалов. Применимость основных материалов общепромышленной и промышленной трубопроводной арматуры, насосов, датчиков, соленоидных клапанов и другого технологического оборудования в различных средах.
    • Таблица химической стойкости резин и эластомеров NBR, HNBR, CR, ACM, VMQ, FVMQ, FPM, FFPM, AU, EPDM, PTFE
    • Таблица применимости материалов на антидетонаторах, антидетонационных, октаноповышающих присадках к бензинам. Химическая стойкость пластмассовых (пластиковых) труб из полиэтиленов ПВД = LDPE = ПЭВД и ПНД = HDPE, полипропилена ПП = PP, ПВХ = поливинилхлорида =PVC Выписка из строительных норм СН 550-82
    • Таблица. Температурные пределы применимости пластмасс, полимеров и эластомеров
    • Таблица. Температурные пределы применимости неметаллических материалов Таблица . Применимость эластомеров в различных средах. Химическая стойкость.
    • Таблица. Химическая стойкость эпоксидных и полиэпоксидных смол.
    • Таблица. Химическая стойкость полиэфиров (полиэстеров).
    • Таблица. Химическая стойкость полиэтилена, труб из ПЭ (PE), фасонных деталей ПЭ.
    • Таблица. Химическая стойкость труб и соединительных деталей из меди. Коррозионная стойкость медных труб и фитингов.
    • Таблица. Химическая стойкость труб и соединительных деталей из полипропилена PP-R Таблица. Химическая стойкость поливинилхлорида, труб из ПВХ и НПВХ=непластифицированного (PVC,uPVC), фасонных деталей из ПВХ.
    • Таблица. Коррозионная стойкость металлов и сплавов при нормальных условиях
    • Таблица химической стойкости титана в жидкостях и газах. Коррозионные свойства титана
    • Таблица. Коррозионная стойкость обычных металлических материалов труб, арматуры, насосов, емкостей и т.д. (металлов и сплавов). Углеродистые стали, Чугун, AISI (ANSI, ASTM) 302, 304, 316 и 416 нержавеющие стали, Бронза, Monel, Hasteloy B, Hasteloy C.
    • Таблица. Химическая стойкость терморасширенного графита (ТРГ), изготовленного с использованием азотной кислоты
    • Таблица. Применимость нержавеющих сталей по AISI. Коррозионная стойкость сталей по AISI в различных применениях. Применимость (совместимость) материалов при использовании на озоне O3. Химическая стойкость на озоне. Применимость (совместимость) материалов при использовании на перекиси водорода H2O2. Химическая стойкость на перекиси водорода.
    • Таблица. Температурные пределы применимости и некоторые рекомендации для ASTM литых сталей и сплавов (в трубопроводной арматуре). Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов)
    • Прочее и т.д.

    Читайте также: Клапан рециркуляции картерных газов пассат б5 1 9 тди

    4. Кавитация как риск, оценка вероятности возникновения кавитации в клапане.

    Кавитация, это явление образования пузырьков = каверн =пустот в жидких средах, с последующим их схлопыванием и высвобождением большого количества энергии и ударных волн, которые сопровождаются шумом и гидравлическими ударами. Кавитационные ударные волны активно разрущают поверхности, образуя классические кавитационные зоны разрушения материала. Фактически, кавитация — это явление вскипания жидкости при локальном (местном) падении давления ниже давления вскипания при данной температуре и последующего схлопыания этих пузырьков. Кавитация сопровождается характерным шумом кавитации, который являет собой собой случайный набор звуковых импульсов от схлопывания отдельных пузырьков. Очень характерный и незабываемый звук.

    Суть проблемы в следующем — кроме полного (невосстановимого) падения давления на руггулирующем клапане, внутри клапана существуют зоны очень сложных неламинарных потоков они же зоны локального = местного (восстановимого) падения давления, см. рисунок слева. В этих зонах падение давления ниже давления вскипания рабочей среды при данной температуре = давления насщенных паров при данной температуре — вполне реально. Что немедленно и запускает процесс кавитации.

    Чем выше полное падение = полный перепад давления на клапане, тем выше этот риск. Естественно, эффект довольно часто проявляется при использовании регуляторов давления, снижающих и поддерживающих давление в системе «после себя» = редукционных клапанов, или при нахождении рабочей точки клапана вблизи начала его регулировочной кривой («в нуле»).

    Для оценки=проверки риска появлении кавитации при больших перепадах давления на клапане применяется следующая формула

    Что означает, что полное падение давления на клапане уж точно не должно превышать 60% от входного!

    • Справочно: Подробный обзор: Давление насыщенных паров, давление вскипания, давление кавитации
    • Справочно: отношение входного давления к выходному или допустимый перепад давления на клапане.

    5. Уровень шума, риски возникновения шума без кавитации. Риски резонансов.

    Шум работающего клапана вызывает резкое ухудшение условий труда и жизни рядом с регулятором. Может передаваться по трубам и рабочей среде на огромное расстояние. Шум это результат обусловленных гидравликой или газодинамикой в клапане колебательных процессов деталей и корпусов регуляторов. При совпадении основной частоты колебаний с собственной частотой колебаний клапана амплитуда колебаний резко возрасти, что приведед к преждевременному усталостному разрушению материалов клапана и/или системы в целом.

    Считается, что за риск вознкновения повышенного шума в основном отвечает скорость рабочей среды в трубопроводе. Примерная фактическая усредненная скорость среды может быть оценена как:

    Таблица: ориентировочные рекомендуемые максимальные скорости различных рабочих сред для снижения риска появления критического шума

    🔥 Видео

    стоит ли менять направляющие клапановСкачать

    стоит ли менять направляющие клапанов

    РАСЧЕТ ПОДКЛАДНЫХ ШАЙБ ДЛЯ РЕГУЛИРОВКИ КЛАПАНОВ автомобилей ВАЗСкачать

    РАСЧЕТ ПОДКЛАДНЫХ ШАЙБ ДЛЯ РЕГУЛИРОВКИ КЛАПАНОВ автомобилей ВАЗ

    так бежит направляющая клапана , большой расход маслаСкачать

    так бежит направляющая клапана , большой расход масла

    минимально допустимый размер регулировочной шайбы вазСкачать

    минимально допустимый размер регулировочной шайбы ваз

    Как узнать градус зенковки? Какая зенковка Какая шарошка как определить зенковки шарошкиСкачать

    Как узнать градус зенковки? Какая зенковка  Какая шарошка как определить зенковки шарошки

    Регулировка клапанов без замены шайб,без микрометра и фрезеровщика.Скачать

    Регулировка клапанов без замены шайб,без микрометра и фрезеровщика.

    Как быстро проверить какие клапана нужно притирать.Скачать

    Как быстро проверить какие клапана нужно притирать.

    РЕГУЛИРОВОЧНЫЙ СТАКАН как подогнать в размер АвторемонтСкачать

    РЕГУЛИРОВОЧНЫЙ СТАКАН как подогнать в размер Авторемонт

    ЗАГНУЛИСЬ КЛАПАНА ИЛИ НЕТ? КАК УЗНАТЬ ? HOW TO KNOW THE VALVE IS DEFLECTED OR NOT?Скачать

    ЗАГНУЛИСЬ КЛАПАНА ИЛИ НЕТ? КАК УЗНАТЬ ? HOW TO KNOW THE VALVE IS DEFLECTED OR NOT?

    Как проверить герметичность клапанов гбцСкачать

    Как проверить герметичность клапанов гбц

    Клапана и Пружины! Вес, Жесткость и Седло Клапана!Скачать

    Клапана и Пружины! Вес, Жесткость и Седло Клапана!

    Простая регулировка клапанов Ваз 2109.Скачать

    Простая регулировка клапанов Ваз 2109.

    подрезка клапана и для чего она нужнаСкачать

    подрезка клапана и для чего она нужна

    Регулировка клапанов подпил шлифовка подгон стаканчика толкателя Adjusting the valves for the pusherСкачать

    Регулировка клапанов подпил шлифовка подгон стаканчика толкателя Adjusting the valves for the pusher

    как подточить клапан без съема гбцСкачать

    как подточить клапан без съема гбц

    Самый простой способ регулировки клапанов ваз 2107 за пять минутСкачать

    Самый простой способ регулировки клапанов ваз 2107  за пять минут
Поделиться или сохранить к себе:
Технарь знаток