Как вписать два цилиндра

Авто помощник

По теме Тела и поверхности вращения школьнику необходимо знать следующее:

  1. Цилиндр. Основание, высота, боковая поверхность, образующая, развертка
  2. Конус. Основание, высота, боковая поверхность, образующая, развертка
  3. Шар и сфера, их сечения

Главная особенность всех упомянутых тел — наличие оси вращения, которая является осью симметрии тела. Если совместить оси вращения двух разных тел, то также получится некая осесимметричная конструкция, все сечения которой плоскостью, проходящей через эту ось, будут одинаковыми. Это позволяет быстро и легко переходить от задачи по стереометрии к рассмотрению плоского сечения.

Как вписать два цилиндраКак вписать два цилиндра

Поэтому в школьных учебниках, а также в заданиях ЕГЭ по математике часто встречаются задачи на вписанные и описанные тела вращения. Решим несколько примеров.

Могут потребоваться следующие формулы:

площадь боковой поверхности цилиндра Sб = 2πrh;
площадь полной поверхности цилиндра Sп = 2πrh + 2πr 2 ,
где r — радиус основания цилиндра, h — его высота.

площадь боковой поверхности конуса Sб = πrl;
площадь полной поверхности конуса Sп = πr(r + l),
где r — радиус основания конуса, l — длина образующей.

Объём шара V = 4 _ 3 πR 3 ;

площадь сферы (поверхности шара) S = 4πR 2 ,
где R — радиус шара (сферы).

Видео:не растачивайте цилиндры пока не посмотрите это видео!Скачать

не растачивайте цилиндры пока не посмотрите это видео!

Задачи на тела вращения

Внимание: задачи с решениями, но они временно скрыты. Сначала сделайте попытку решить задачу самостоятельно, и только после этого нажимайте кнопки «Посмотреть ответ» и «Посмотреть решение». Ваш ответ должен совпадать с указанным, но способ решения может быть несколько иным.

Цилиндр, объём которого равен 33, описан около шара. Найдите объём шара.

Как видно из рисунков выше, осевое сечение цилиндра с вписанным шаром представляет собой квадрат с вписанным кругом. Радиус основания цилиндра (r) равен радиусу вписанного шара (R), а его высота (h) равна диаметру шара (удвоенному радиусу).
Тогда объем цилиндра Vц = πr 2 h = πR 2 ·2R = 2πR 3 .

Отсюда находим R 3 = Vц ___ 2π и, соответственно, Vш = 4 _ 3 πR 3 = 4π __ 3 · Vц __ 2π

После сокращения дроби, получим Vш = 2Vц /3 = 2·33/3 = 22.

Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.

Площадь полной поверхности цилиндра находим по формуле Sц = 2πrh + 2πr 2 .
Аналогично предыдущей задаче из рисунка для плоского сечения видно, что радиус основания цилиндра (r) равен радиусу вписанного шара (R), а его высота (h) равна диаметру шара (удвоенному радиусу).
Поэтому Sц = 2πR·2R + 2πR 2 = 6πR 2 .
Величину πR 2 найдем из формулы поверхности шара Sш = 4πR 2 . Следовательно, πR 2 = Sш /4 = 111/4.
Окончательно находим Sц = 6·111/4 = 333/2 = 166,5 .

Ответ: 166,5

Цилиндр вписан в шар, радиус которого равен √2 _ . Найти объём цилиндра, если высота цилиндра в два раза больше радиуса цилиндра. Ответ записать в виде десятичной дроби с точностью до 0,01.

Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Как вписать два цилиндра

Объём цилиндра определяется по формуле V = πr 2 h .
По условию задачи h = 2r.
Чтобы найти радиус цилиндра, дополнили чертеж осевого сечения радиусом шара и расставили буквы для обозначения отрезков. Здесь O — центр шара, OB = R — радиус шара, AB = r — радиус цилиндра.
Точка O также является серединой высоты цилиндра, поэтому AO = h/2. В нашем случае h/2 = r, таким образом AO = AB = r, и треугольник OAB — прямоугольный, равнобедренный.

Читайте также: Поршни в тормозных цилиндрах ваз 2110

Отсюда находим радиус цилиндра r = R·sin45° = R· √2 _ /2 = √2 _ · √2 _ /2 = 1

и его объём V = πr 2 h = π·1 2 ·2 = 2π ≈ 6,28 .

В шар, площадь поверхности которого равна 100π, вписан цилиндр. Найти высоту цилиндра, если радиус его основания равен 4.

Как вписать два цилиндра

Дополним чертеж осевого сечения радиусом шара и расставим буквы для обозначения отрезков.
Площадь поверхности шара Sш = 4πR 2 = 100π. Отсюда R 2 = 25 и R = 5.
В треугольнике OAB: OA = x — половина искомой высоты цилиндра; AB = 4 — радиус основания цилиндра; OB = 5 — радиус шара.
По теореме Пифагора:
x 2 + 4 2 = 5 2
x 2 = 25 − 16 = 9; x = 3. h = 6.

Конус вписан в цилиндр. Вычислите объём цилиндра, если объём конуса равен 5.

Как видно из рисунков вверху, в этом случае конус и цилиндр имеют общее основание и общую высоту.

Видео:Что если, ОТПИЛИТЬ 2 ЦИЛИНДРА и запустить ПОЛОВИНУ ДВИГАТЕЛЯ?Скачать

Что если, ОТПИЛИТЬ 2 ЦИЛИНДРА и запустить ПОЛОВИНУ ДВИГАТЕЛЯ?

При одинаковых r и h объём конуса Vк = 1 _ 3 πr 2 h

в три раза меньше объёма цилиндра Vц = πr 2 h .
Таким образом, искомая величина Vц = 3×5 = 15.

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна 3 √2 _ . Найдите площадь боковой поверхности конуса.

Как вписать два цилиндра

Воспользуемся чертежом осевого сечения, расставим буквы для обозначения отрезков: AC = h — высота конуса и цилиндра, CB = r — радиус оснований конуса и цилиндра, AB = l — образующая цилиндра.
Из треугольника ABC по теореме Пифагора:

т.е. площадь боковой поверхности цилиндра в √2 _ раз больше площади боковой поверхности конуса.
Окончательно Sк = 3 √2 _ / √2 _ = 3

В конус вписан цилиндр так, что его верхнее основание пересекает высоту конуса в её середине. Найдите объём конуса, если объем цилиндра равен 60.

Как вписать два цилиндра

Воспользуемся чертежом осевого сечения, расставим буквы для обозначения отрезков:
AC = hк — высота конуса, CB = rк — радиус основания конуса,
DC = hц — высота цилиндра, DE = rц — радиус основания цилиндра.
Найдём отношение объёмов конуса и цилиндра:

По условию задачи точка D — середина отрезка AC, т.е. AD = DC = AC / 2 , и потому hк : hц = 2 : 1 .

Видео:Два цилиндра на Suzuki RanСкачать

Два цилиндра на Suzuki Ran

В конус с высотой 15 и радиусом основания 3 вписан цилиндр объёма V. Найти наибольшее возможное значение объёма цилиндра.

Как вписать два цилиндра

В один и тот же конус можно вписать разные цилиндры. Обозначим символом r радиус вписанного цилиндра, h — его высоту.
Из подобия треугольников ADE и ABC (см. решение предыдущей задачи) составим пропорцию
AC : AD = CB : DE,
15 : (15 − h) = 3 : r,
преобразуя которую, найдём соотношение между высотой и радиусом цилиндра, вписанного в заданный конус:
15· r = 3·(15 − h), h = 15 − 5r .

Теперь можем выразить объём цилиндра только через один его характерный размер:
V = πr 2 h = πr 2 ·(15 − 5r) = 15πr 2 − 5r 3 .
Получили выражение для объёма цилиндра в виде функции одной переменной V = f(r) .
Чтобы найти максимальное значение этой функции, нужно найти её производную.
V’ = (15πr 2 − 5r 3 )’ = 15π·2r − 5·3r 2 = 30πr − 15r 2 .
Затем приравнять производную к нулю и решить уравнение V’ = 0 относительно переменной r.
30πr − 15πr 2 = 0, 15πr(2 − r) = 0 .
Это уравнение имеет два корня r1 = 0 и r2 = 2, которые являются точками экстремумов функции V(r). Необходимости проводить исследование на характер экстремумов в данном случае нет, так как очевидно, что при r = 0 объем «цилиндра» будет нулевым, т.е. минимальным. Максимального значения объём достигает при r = 2. Вычислим это значение
V = 15πr 2 − 5r 3 = 15π·2 2 − 5π·2 3 = 60π − 40π = 20π .

Читайте также: Под конус или цилиндр

Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Образующая конуса равна 7 √2 _ . Найдите радиус сферы.

Как вписать два цилиндра

Так как по условию задачи центр сферы находится в центре основания конуса, то основание конуса, в свою очередь, является диаметральным сечением сферы. Т.о. на плоском чертеже отрезок AB является диаметром окружности, и ∠ACB = 90° как вписанный угол, опирающийся на её диаметр.
Пусть l = 7 √2 _ — образующая конуса, R — радиус сферы. Тогда в прямоугольном треугольнике ABC AC = BC = l — катеты, AB = 2R — гипотенуза. По теореме Пифагора
AB 2 = AC 2 + BC 2 ;
(2R) 2 = l 2 + l 2 ;
4R 2 = l 2 + l 2 = 2l 2 ; 4R 2 = 2(7 √2 _ ) 2 ;
4R 2 = 2·49·2 = 4·49; R 2 = 49; R = 7 .

Найти площадь поверхности шара, описанного около конуса, у которого радиус основания 2 __ √π _ ,

Как вписать два цилиндра

Видео:ЕГЭ-2020: Изменение объёма цилиндраСкачать

ЕГЭ-2020: Изменение объёма цилиндра

Пусть R — радиус сферы. Поскольку СD — диаметр окружности осевого сечения, то СH + HD = 2R.
Воспользуемся свойством пересекающихся хорд окружности, чтобы найти длину отрезка HD = x.
DH·HС = AH·HC

x· 1 __ √π _ = 2 __ √π _ · 2 __ √π _

Преобразуя, получим х = 4 __ √π _ .

Тогда 2R = 1 __ √π _ + 4 __ √π _ = 5 __ √π _ ; R = 5 ___ 2 √π _ .

Площадь сферы S = 4πR 2 = 4π· 25 ___ 4π = 25 .

В шар вписан конус. Площадь осевого сечения конуса равна 3 √9 / π 2 _____ , а угол между высотой и образующей равен 45°. Найти объём шара.

Как вписать два цилиндраНа этом рисунке углы между высотой и образующей — ∠OCA и ∠OCB. По условию задачи они равны 45°. Таким образом треугольники OCA и OCB прямоугольные, равнобедренные. Следовательно, радиус шара равен высоте конуса, и площадь осевого сечения конуса (площадь треугольника ABC) можно выразить только через радиус шара S = OC·AB/2=R·2R/2 = R 2 .
Таким образом,
Как вписать два цилиндра

В шар вписан конус, образующая которого равна диаметру основания. Найти отношение полной поверхности этого конуса к поверхности шара.

Как вписать два цилиндра

Пусть образующая конуса (AC = BC) равна a. Тогда по условию задачи диаметр конуса (AB) тоже равен a. То есть, треугольник ABC — равносторонний.
Чтобы найти радиус шара (R), используем формулу, связывающую длину стороны равностороннего треугольника и радиус описанной около него окружности.

Радиус основания конуса r = a/2 (половина диаметра).
Площадь полной поверхности конуса
Sк = πr(r + l) = π·a/2·(a/2 + a) = 3πa 2 /4 .
Площадь поверхности шара
Sш = 4πR 2 = 4π·a 2 ·( √3 _ /3) 2 = 4πa 2 /3 .
Их отношение

💥 Видео

Yamaha jog на два цилиндраСкачать

Yamaha jog на два цилиндра

Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВСкачать

Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВ

FreeCad Два цилиндраСкачать

FreeCad Два цилиндра

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

СДЕЛАЙ САМ! КОЖУХ НА ДВА ЦИЛИНДРА СКУТЕРА.Скачать

СДЕЛАЙ САМ! КОЖУХ НА ДВА ЦИЛИНДРА СКУТЕРА.

Проблема c 4afe, работают 2 цилиндраСкачать

Проблема c 4afe, работают 2 цилиндра

2 и 3 цилиндр снимаешь брони провод со свечи Мотор Никаких ИзмененийСкачать

2 и 3 цилиндр снимаешь брони провод со свечи Мотор Никаких Изменений

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВСкачать

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВ

Причина Пропусков зажигания 2и3 цилиндраСкачать

Причина Пропусков зажигания 2и3 цилиндра

Почему не работают 2 цилиндра?? Причина найдена.Скачать

Почему не работают 2 цилиндра?? Причина найдена.

Самый быстрый способ как вставить цилиндр в суппортСкачать

Самый быстрый способ как вставить цилиндр в суппорт

Иж Юпитер два цилиндра работают вместе Часть 2 .Скачать

Иж Юпитер два цилиндра работают вместе Часть 2 .

ЗАДИРОВ в цилиндрах НЕ БУДЕТ если делать так...Скачать

ЗАДИРОВ в цилиндрах НЕ БУДЕТ если делать так...

ИЖ Юпитер два цилиндра работают вместе Часть 1Скачать

ИЖ Юпитер  два цилиндра работают вместе Часть 1

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)
Поделиться или сохранить к себе:
Технарь знаток