Призма описана около цилиндра, если ее основания — многоугольники, описанные около оснований цилиндра. Соответственно, цилиндр вписан в призму.
Цилиндр можно вписать в призму, если в основание призмы можно вписать окружность. Радиус вписанной окружности равен радиусу цилиндра. Высоты цилиндра и призмы равны. В школьном курсе изучается только прямой круговой цилиндр, соответственно, цилиндр в этом случае вписан в прямую призму.
Боковые грани описанной около цилиндра призмы являются касательными плоскостями к боковой поверхности цилиндра.
Найдем отношение объема призмы к объему вписанного в нее цилиндра:
p — полупериметр основания призмы, r — радиус вписанной в основание призмы окружности и радиус цилиндра, H — высота призмы и высота цилиндра.
В частности, отношение объема правильной треугольной призмы к объему вписанного цилиндра
Отношение объема правильной четырехугольной призмы к объему вписанного цилиндра
Для правильной шестиугольной призмы это отношение равно
Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:
Поскольку половина периметра основания — полупериметр,
Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра
Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра
Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра
При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.
- Цилиндры, вписанные в призмы
- Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра
- Отношение объемов цилиндра и описанной около него правильной n — угольной призмы
- Призмы, вписанные в цилиндры
- Призмы, вписанные в цилиндр. Свойства призмы, вписанной в цилиндр
- 11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.
- 11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.
- Вопросы
- Поделись с друзьями
- Комментарии преподавателя
- Цилиндр, вписанный в призму
- Условия, при которых цилиндр можно вписать в призму
- Задача №1
- Цилиндр, описанный около призмы
- Условия, при которых цилиндр можно описать около призмы
- Задача №2
- Разветвление: задача №3
- Заключение
- 💥 Видео
Видео:Призма и цилиндр. Практическая часть. 11 класс.Скачать
Цилиндры, вписанные в призмы
Видео:Видеоурок по математике "Цилиндр"Скачать
Цилиндры, вписанные в призмы. Свойства призмы, описанной около цилиндра
Определение 2. Если цилиндр вписан в призму, то призму называют описанной около цилиндра.
Прежде, чем перейти к вопросу о том, в какую же призму можно вписать цилиндр, докажем следующее свойство призм.
Утверждение 1. Если в основания призмы можно вписать окружности, то отрезок, соединяющий центры вписанных окружностей, будет параллелелен и равен боковому ребру призмы.
Рассуждая аналогичным образом, заключаем, что точка O’ равноудалена от всех прямых, на которых лежат ребра верхнего основания A’1A’2, A’2A’3, . , An – 1An , а поскольку O’ лежит в плоскости верхнего основания, то точка O’ является центром вписанной в многоугольник A’1A’2 . A’n окружности.
В силу того, что прямые OO’ и A1A’1 параллельны по построению, а прямые OA1 и O’A’ параллельны как линии пересечения двух параллельных плоскостей третьей плоскостью, замечаем, что четырехугольник OO’A1A’1 является параллелограммом, откуда вытекает равенство: OO’ = A1A’1 .
Теорема. В призму можно вписать цилиндр тогда и только тогда, когда выполнены следующие два условия:
- Призма является прямой призмой;
- В основания призмы можно вписать окружности.
Читайте также: При замене заднего тормозного цилиндра надо ли прокачивать тормоза
Доказательство. Докажем сначала, что если в n – угольную призму вписан цилиндр, то оба условия теоремы выполнены.
Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, вписанного в призму. Докажем, что выполняется и условие 1, т.е. докажем, что описанная около цилиндра призма является прямой призмой.
С этой целью рассмотрим ось цилиндра OO’ , соединяющую центры окружностей, вписанных в нижнее и верхнее основания призмы (рис. 3).
Согласно утверждению 1 отрезок OO’ параллелен боковым ребрам призмы. Поскольку ось цилиндра OO’ перпендикулярна к плоскостям его оснований, то и боковые ребра призмы также перпендикулярны к плоскостям оснований, то есть призма является прямой призмой.
Таким образом, мы доказали, что, если призма описана около цилиндра, то оба условия теоремы выполнены.
Теперь рассмотрим прямую n – угольную призму высоты h, в основания которой можно вписать окружности, и докажем, что в такую призму можно вписать цилиндр.
Обозначим буквой O центр окружности радиуса r, вписанной в нижнее основание призмы, а символом O’ обозначим центр окружности, вписанной в верхнее основание призмы (рис. 4).
Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы вписанных в них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.
Цилиндр с осью OO’ , радиусом r и высотой h и будет вписан в исходную призму.
Доказательство теоремы завершено.
Следствие 1 . Высота призмы, описанной около цилиндра, равна высоте цилиндра.
Следствие 2. В любую прямую треугольную призму можно вписать цилиндр.
Справедливость этого утверждения вытекает из того факта, что в любой треугольник можно вписать окружность.
Следствие 3. В любую правильную n – угольную призму можно вписать цилиндр.
Для доказательства этого следствия достаточно заметить, правильная призма является прямой призмой. Основаниями правильной призмы являются правильные многоугольники, а в любой правильный n – угольник можно вписать окружность.
Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать
Отношение объемов цилиндра и описанной около него правильной n — угольной призмы
Задача. Найти отношение объемов цилиндра и описанной около него правильной n — угольной призмы.
Решение. Поскольку и объем цилиндра, и объем призмы объем призмы вычисляются по формуле
а высота цилиндра равна высоте описанной около него призмы, то для объемов цилиндра и описанной около него правильной n — угольной призмы справедливо равенство
Следствие 4. Отношение объема цилиндра к объему описанной около него правильной треугольной призмы правильной треугольной призмы равно
Следствие 5. Отношение объема цилиндра к объему описанной около него правильной четырехугольной призмы правильной четырехугольной призмы равно
Следствие 6. Отношение объема цилиндра к объему описанной около него правильной шестиугольной призмы равно
Видео:ВПИСАННАЯ И ОПИСАННАЯ ПРИЗМЫ // СТЕРЕОМЕТРИЯСкачать
Призмы, вписанные в цилиндры
Видео:№225. Диагональ правильной четырехугольной призмы образует с плоскостью боковой грани угол в 30°.Скачать
Призмы, вписанные в цилиндр. Свойства призмы, вписанной в цилиндр
Определение 1. Призмой, вписанной в цилиндр, называют такую призму, основания которой вписаны в окружности оснований цилиндра, а боковые ребра призмы являются образующими цилиндра (рис. 1).
Читайте также: Обнаружен пропуск воспламенения для защиты нейтрализатора в 3 цилиндре
Определение 2. Если призма вписана в цилиндр, то цилиндр называют описанным около призмы.
Прежде, чем перейти к вопросу о том, какую призму можно вписать в цилиндр, докажем следующее свойство призм.
Утверждение 1. Если около оснований призмы можно описать окружности, то отрезок, соединяющий центры описанных окружностей, будет параллелелен и равен боковому ребру призмы.
Докажем, что точка O’ является центром окружности радиуса r, описанной около верхнего основания призмы. С этой целью рассмотрим, например, четырехугольник A1A’1O’O (рис. 2).
Рассуждая аналогичным образом, заключаем, что
то есть точка O’ – центр окружности радиуса r , описанной около верхнего основания призмы.
В силу того, что четырехугольник OO’A1A’1 является параллелограммом, получаем равенство
Теорема. Около призмы можно описать цилиндр тогда и только тогда, когда выполнены следующие два условия:
- Призма является прямой призмой;
- Около оснований призмы можно описать окружности.
Доказательство. Докажем сначала, что если около n – угольной призмы описан цилиндр, то оба условия теоремы выполнены.
Действительно, выполнение условия 2 следует непосредственно из определения цилиндра, описанного около призмы. Из этого определения также следует, что вписанная в цилиндр призма является прямой призмой, поскольку образующие цилиндра перпендикулярны к плоскостям его оснований,
Таким образом, мы доказали, что, если призма вписана в цилиндр, то оба условия теоремы выполнены.
Теперь рассмотрим прямую n – угольную призму высоты h, около оснований которой можно описать окружности, и докажем, что около такой призмы можно описать цилиндр.
Обозначим буквой O центр окружности радиуса r, описанной около нижнего основания призмы, а символом O’ обозначим центр окружности, описанной около верхнего основания призмы.
Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы описанных около них окружностей будут равны. Согласно утверждению 1 отрезок OO’ параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок OO’ перпендикулярен плоскости основания призмы и равен h.
Цилиндр с осью OO’ , радиусом r и высотой h и будет описан около исходной призмы.
Доказательство теоремы завершено.
Следствие 1. Высота призмы, вписанной в цилиндр, равна высоте цилиндра.
Следствие 2. Около любой прямой треугольной призмы можно описать цилиндр (рис. 4).
Следствие 3. Около любого прямоугольного параллелепипеда (в частности, около куба прямоугольного параллелепипеда (в частности, около куба ) можно описать цилиндр (рис. 5).
Замечание 1. Если у прямоугольного параллелепипеда прямоугольного параллелепипеда три ребра, выходящие из одной вершины, равны a, b, c и различны, то существует три возможности описать около этого параллелепипеда цилиндр в зависимости от того, какое из ребер параллелепипеда выбрано в качестве образующей описанного цилиндра (рис. 6, 7, 8).
Видео:#130. Задание 8: комбинация телСкачать
11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.
11 класс. Геометрия. Тела вращения. Взаимные комбинации тел вращения.
Вопросы
Задай свой вопрос по этому материалу!
Поделись с друзьями
Комментарии преподавателя
Видео:Задание 2|ЕГЭ ПРОФИЛЬ| СТЕРЕОМЕТРИЯ| Цилиндр вписан в прямоугольный параллелепипед.Радиус основанияСкачать
Цилиндр, вписанный в призму
Говорят, что цилиндр вписан в призму (или призма описана около цилиндра), если основания цилиндра вписаны в соответствующие основания призмы (рис. 1). Очевидно, что их высоты совпадут (рис. 2).
Читайте также: Блок цилиндров двигатель k7j
Рис. 1. Цилиндр, вписанный в призму
Рис. 2. Цилиндр, вписанный в призму
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Условия, при которых цилиндр можно вписать в призму
Нужно, чтобы в основание призмы можно было вписать окружность. Что для треугольной и правильной призмы верно всегда (рис. 3, 4).
Рис. 3. Цилиндр, вписанный в треугольную призму
Рис. 4. Цилиндр, вписанный в правильную шестиугольную призму
Вывод: цилиндр можно вписать в призму, если призма прямая, а в ее основание можно вписать окружность.
Для четырехугольный призмы необходимо чтобы призма была также прямой, а четырехугольник в основании был описанным. Т. е. суммы противоположных сторон были равны (рис. 5).
Рис. 5. Цилиндр, вписанный в четырехугольную призму
Видео:Комбинация призм и цилиндровСкачать
Задача №1
Условие: в правильную треугольную призму, все ребра которой равны 6, вписан цилиндр. Найти его радиус и высоту (рис. 6).
Рис. 6. Иллюстрация к задаче 1
Заметим, что высота цилиндра равна высоте призмы, а значит, равна 6.
Радиус основания цилиндра равен радиусу окружности, вписанной в правильный треугольник со стороной 6. Радиус этой окружности находим по формуле , то есть он равен .
Ответ: .
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Цилиндр, описанный около призмы
Говорят, что цилиндр можно описать около призмы (или призму вписать в цилиндр), если основания призмы вписаны в основания цилиндра. В данном случае, очевидно, снова будут равны высоты (боковые стороны призмы и образующие цилиндра) (рис. 7).
Рис. 7. Цилиндр, описанный около призмы
Видео:Правильная четырехугольная призма | Стереометрия #46 | ИнфоурокСкачать
Условия, при которых цилиндр можно описать около призмы
Цилиндр можно описать около призмы, когда основание призмы можно вписать в окружность. Для треугольной -угольной правильной призмы – всегда, для четырехугольной – когда сумма противоположных углов в основании дает 180 градусов (рис. 8).
Рис. 8. Цилиндр, описанный около четырехугольной призмы
Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
Задача №2
Условие: дана правильная шестиугольная призма, вписанная в цилиндр. Радиус основания цилиндра равен 7, а площадь боковой поверхности цилиндра равна 28. Найти площадь боковой поверхности призмы (рис. 9).
Рис. 9. Иллюстрация к задаче 2
Сперва найдем высоту цилиндра. Так как , то .
Значит, и боковое ребро призмы также равно 2.
Далее, в основании призмы лежит правильный шестиугольник, вписанный в окружность. Как известно, сторона правильного шестиугольника равна радиусу описанной окружности, то есть 7.
Тогда площадь боковой поверхности призмы равна .
Видео:xi408 Комбинации с цилиндромСкачать
Разветвление: задача №3
Условие. Дана четырехугольная прямая призма, все ребра которой равны 1. Известно, что около этой призмы можно описать цилиндр. Найдите объем призмы и площадь полной поверхности данного цилиндра (рис. 10).
Рис. 10. Иллюстрация к задаче 3
Так как все ребра равны, то в основании призмы лежит ромб. Раз можно описать цилиндр около призмы, то ромб можно вписать в окружность, а значит, этот ромб – квадрат. Следовательно, призма – это куб со стороной 1, его объем также равен 1.
Высота цилиндра – 1, а радиус окружности равен половине диагонали квадрата, то есть . Тогда .
Ответ: .
Видео:Как делить числа? Свойства деленияСкачать
Заключение
На уроке мы разобрали комбинации призмы и цилиндра, а также решили задачи по темам: цилиндр, описанный вокруг призмы и цилиндр, вписанный в призму.
💥 Видео
Задание 54. Чертеж ЛИНИИ ПЕРЕСЕЧЕНИЯ цилиндра и призмы трехгранной Часть 1Скачать
9 класс, 41 урок, ЦилиндрСкачать
11 класс. Геометрия. Объем цилиндраСкачать
Комбинации тел. Урок 10. Геометрия 11 классСкачать
Призма и ее элементы, виды призм. 11 класс.Скачать
Геометрия 11 класс (Урок№12 - Объемы прямой призмы и цилиндра.)Скачать