Как врезать цилиндр в пирамиду

Авто помощник

Пересечение прямого кругового цилиндра с поверхностью пирамиды.

На рис 17 показано пересечение цилиндра и правильной шестиугольной пирамиды. Сначала определяется на каких проекциях нужно строить линию пересечения. Затем определяют характерные точки. Дополнительные точки строятся с помощью вспомогательных горизонтальных плоскостей.

Раздел 5 Взаимное пересечение поверхностей двух тел вращения.

5.1 Пересечение поверхностей цилиндров.

Построение линии пересечения цилиндров начинают со сравнения их оснований. На рис. 18 изображены три вертикальных цилиндра (А,Б,В) разных диаметров, которые пересекаются с половиной горизонтального цилиндра.

Рассмотрим, какая получается линия пересечения в зависимости от соотношения диаметров цилиндров. Если пересекаются два цилиндра разных диаметров, то линия их пересечения представляет собой кривую, кривизна которой зависит от разности диаметров. Чем больше разность, тем меньше кривизна, и наоборот. При этом изгиб кривой всегда идет в сторону большего диаметра, так как цилиндр с меньшим диаметром как бы проходит через цилиндр с большим диаметром. Если же диаметры одинаковые, то линия пересечения изображается прямыми линиями, имея форму эллипсов.

5.2 Построение пересечения поверхностей тел вращения с помощью вспомогательных секущих плоскостей.

Линии пересечения тел вращения обычно строят с помощью вспомогательных секущих плоскостей Р (рис. 19). Каждая плоскость пересекает одновременно оба тела вращения по соответствующим линиям. Эти линии пересекаются между собой в точках, определяющих линию пересечения заданных поверхностей. Количество вспомогательных плоскостей берется в зависимости от требуемой точности построения.

Еще один пример на рис. 20. Здесь рассматривается построение линии пересечения конуса и шара. Вспомогательные плоскости — фронтально-прецирующие плоскости N, R, Т, М.

Видео:Построение врезок двух геометрических фигурСкачать

Построение врезок двух геометрических фигур

Вписанный в пирамиду цилиндр. Цилиндр и пирамида: варианты комбинаций

Как врезать цилиндр в пирамиду

Одними из интересных задач, которые позволяют сравнить различные объемные фигуры, являются задачи на описание одной из них около другой. В данной статье рассмотрим различные варианты описанного около пирамиды и вписанного в пирамиду цилиндра.

Видео:врезка куб и пирамида - Костромина Татьяна АлександровнаСкачать

врезка куб и пирамида - Костромина Татьяна Александровна

Пирамида в геометрии

Прежде чем изучать комбинации вписанного в пирамиду цилиндра и вписанной пирамиды в цилиндр, следует рассмотреть эти фигуры с точки зрения геометрии. Начнем с пирамиды.

Фигура пирамида представляет собой тело в пространстве, которое получается, если соединить все вершины произвольного плоского n-угольника с некоторой точкой в пространстве. При этом n-угольник может быть совершенно произвольным (выпуклым, вогнутым, правильным, с различным количеством сторон n). На положение отмеченной точки накладывается одно единственное условие: она не должна лежать в той плоскости, в которой n-угольник находится.

Как врезать цилиндр в пирамиду

На рисунке выше показана, пожалуй, самая известная пирамида — четырехугольная. Видно, что вершины четырехугольника, который называется основанием фигуры, соединены с точкой, лежащей над ним. Эта точка называется вершиной пирамиды.

Приведенное определение и также представленный рисунок свидетельствуют, что любая пирамида, независимо от типа ее основания, будет включать в себя n треугольников. Все они соединяются в вершине фигуры.

Перпендикулярный отрезок, проведенный из вершины фигуры к ее основанию, называется высотой. Если высота пересекает в геометрическом центре n-угольник, то такая пирамида будет прямой. В противном случае имеет место наклонная фигура.

Читайте также: Замена главного цилиндра сцепления бмв е36

Как врезать цилиндр в пирамиду

Если все стороны n-угольника равны между собой, и фигура является прямой, то ее называют правильной. Именно с правильными пирамидами удобно работать при изучении их взаимного расположения с другими объемными телами в геометрии.

Видео:Сложные врезки Цилиндр и пирамидаСкачать

Сложные врезки  Цилиндр и пирамида

Цилиндр в геометрии

Цилиндр в общем случае можно получить, если вдоль замкнутой кривой перемещать отрезок параллельно самому себе таким образом, чтобы отрезок не лежал в плоскости этой кривой. Этот отрезок называется образующей цилиндра, а кривая, вдоль которой он перемещается, носит название направляющей.

Если направляющая является окружностью, а образующая ей перпендикулярна, то полученный цилиндр будет называться прямым с круглым основанием. Эта фигура известна каждому. Она представлена на рисунке ниже.

Как врезать цилиндр в пирамиду

Далее будем рассматривать только прямой круглый цилиндр.

В отличие от пирамиды, цилиндр не имеет вершин и ребер. Однако он образован двумя основаниями (два одинаковых круга, находящихся в параллельных плоскостях) и боковой цилиндрической поверхностью. Если посмотреть на развертку этой фигуры, то можно увидеть, что она состоит из двух кругов и одного прямоугольника (см. рис. ниже).

Как врезать цилиндр в пирамиду

Основными характеристиками цилиндра являются следующие:

  • радиус основания;
  • высота — расстояние между основаниями;
  • площадь оснований и боковой поверхности;
  • объем фигуры.

Видео:ВРЕЗКА ФИГУР. СФЕРА и ПИРАМИДАСкачать

ВРЕЗКА ФИГУР. СФЕРА и ПИРАМИДА

Многоугольник и окружность

Последний вопрос, который следует изучить перед тем, как рассматривать вписанный в пирамиду цилиндр и описанный около нее, связан с взаимным расположением правильного многоугольника и окружности.

Существуют всего два варианта расположения этих плоских фигур:

  • описание окружностью n-угольника;
  • описание n-угольником окружности.

Приведем формулы, позволяющие вычислить длину стороны многоугольника через радиус окружности. Рассмотрим для примера только два первых многоугольника, то есть равносторонний треугольник и квадрат.

Если окружность проходит через все вершины n-угольника, то говорят, что она его описывает. При известном радиусе R длина стороны вычисляется по формуле:

То есть сторона квадрата, вписанного в окружность с радиусом R, будет немного меньше таковой для равностороннего треугольника, описанного той же окружностью.

Если окружность касается каждой из сторон n-угольника, то говорят, что она вписана в него. В случае правильных многоугольников точка касания фигур находится точно посередине каждой стороны n-угольника. Если известен радиус r окружности вписанной, тогда сторона n-угольника определится по формуле:

То есть вокруг окружности фиксированного радиуса можно описать треугольник с большей длиной стороны, чем квадрат.

Как врезать цилиндр в пирамиду

Видео:Как сделать объемный ЦИЛИНДР из бумаги? ||| Геометрические фигуры своими рукамиСкачать

Как сделать объемный ЦИЛИНДР из бумаги? ||| Геометрические фигуры своими руками

Треугольная пирамида, вписанная в цилиндр

Сначала рассмотрим более простой вариант, то есть когда пирамида находится внутри цилиндра. Разберем конкретный пример с правильной треугольной пирамидой. Предположим, что известен радиус R цилиндра и его высота h. Необходимо найти характеристики правильной треугольной пирамиды, вписанной в цилиндр.

Выше уже была приведена формула для стороны равностороннего треугольника, находящегося внутри окружности. Длина его стороны является длиной основания пирамиды. Она равна:

Вершина пирамиды вписанной лежит точно в центре верхнего основания цилиндра, поэтому высоты обеих фигур равны.

Зная длину стороны основания и высоту правильной пирамиды треугольной, можно рассчитать другие ее характеристики. Например, объем вычисляется по формуле:

Длину бокового ребра ab можно рассчитать так:

Видео:ТЕМА 4. ГЕОМЕТРИЧЕСКАЯ ВРЕЗКА: ШАР, КУБ, ЦИЛИНДРСкачать

ТЕМА 4. ГЕОМЕТРИЧЕСКАЯ ВРЕЗКА: ШАР, КУБ, ЦИЛИНДР

Пирамида четырехугольная, вписанная в цилиндр

Как и в предыдущем случае, пирамида находится внутри цилиндра. Только теперь ее основание представляет собой квадрат, сторона которого через радиус R цилиндра вычисляется так:

Высота пирамиды равна таковой для цилиндра, то есть h.

Длина бокового ребра ab составляет:

Заметим, что формула для длины бокового ребра получилась точно такой же, как в случае треугольной пирамиды.

Читайте также: Как самому заменить тормозные цилиндры

Видео:ТЕМА 5. ПОСТРОЕНИЕ ШЕСТИГРАННОЙ ПРИЗМЫ, КОНУСА И ЧЕТЫРЕХГРАННОЙ ПИРАМИДЫ.Скачать

ТЕМА 5.  ПОСТРОЕНИЕ ШЕСТИГРАННОЙ ПРИЗМЫ, КОНУСА И ЧЕТЫРЕХГРАННОЙ ПИРАМИДЫ.

Цилиндр вписан в фигуру

Цилиндр, вписанный в пирамиду, представляет более сложный случай расположения этих фигур. Чтобы рассчитать размеры пирамиды по известному радиусу и высоте цилиндра, следует разобраться, как этот цилиндр будет расположен внутри нее.

Предположим, что имеется плоскость, параллельная основанию пирамиды. Пересечем этой плоскостью боковую поверхность фигуры. Образованное сечение будет представлять точно такой же многоугольник, что лежит в основании, но меньшего размера. Этот многоугольник будет описывать верхнее основание цилиндра. Нижнее основание будет лежать в основании пирамиды.

Как врезать цилиндр в пирамиду

Чтобы найти длину стороны многоугольника сечения, следует воспользоваться функцией зависимости площади сечения от вертикальной координаты z. Эта функция имеет вид:

Здесь z — расстояние от основания пирамиды вдоль ее высоты, hp — высота пирамиды.

Как пользоваться этой формулой для определения параметров описанной около цилиндра пирамиды, покажем на примере решения задачи.

Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Задача с четырехугольной пирамидой и цилиндром

Известно, что цилиндр имеет радиус r = 5 см и высоту h = 6 см. Найти высоту и сторону правильной четырехугольной пирамиды, описывающей его.

Верхнее основание цилиндра должно вписываться в квадратный срез на высоте h = 6 см от основания пирамиды. Тогда площадь сечения равна:

Здесь a — сторона основания пирамиды. Если взять квадратный корень из S(6), то получим длину стороны квадрата сечения. Она должна быть равна 2*r, чтобы основание цилиндра могло вписаться в это сечение, тогда получаем:

Отсюда получаем выражение:

Таким образом, вписать цилиндр, заданный условием задачи, можно не в одну единственную правильную четырехугольную пирамиду, а в бесконечное их число. Однако параметры каждой из них должны удовлетворять выражению выше, которое связывает высоту фигуры с длиной стороны ее основания.

Видео:врезка куба и конуса - Костромина Татьяна АлександровнаСкачать

врезка куба и конуса - Костромина Татьяна Александровна

Врезка куба и цилиндра

Как врезать цилиндр в пирамиду

ЦЕЛЬ ЗАДАНИЯ. Научиться строить врезку куба и цилиндра. Оценить многообразие возможных свя­зок куба и цилиндра, отработать приемы построе­ния их врезок, научиться создавать на листе связки с гармоничными пропорциями.

ПОСТАНОВКА ЗАДАНИЯ. Нарисуйте связки куба и цилиндра сначала по заданным ортогональным проекциям, а затем в произвольном положении по отношению друг к другу. Найдите наиболее краси­вые, гармоничные пропорции связок, изменяя поло­жение линии пересечения геометрических тел.

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ЗАДАНИЯ.

Рассмотрите ортогональные проекции двух геомет­рических тел — куба и цилиндра — на рис. 5.46. Пред­ставьте взаимное положение тел. Изобразите в пер­спективе заданную связку куба и цилиндра с раз­личным положением относительно линии горизонта (выше линии горизонта на рис. 5.47 и ниже линии горизонта на рис. 5.48).

Как врезать цилиндр в пирамиду

Изобразите куб и вертикальный цилиндр в поло­жении, представленном на рис. 5.49. Предложите несколько вариантов врезок, например, как на рис. 5.50 и 5.51. Тонируйте любую связку (рис. 5.52).

Как врезать цилиндр в пирамиду

Как врезать цилиндр в пирамиду

Изобразите куб и горизонтальный цилиндр (рис. 5.53). Предложите гармоничные врезки, например, как на рис. 5.54 и 5.55 (тон на рис. 5.56).
Теперь попробуйте сделать подобное упражне­ние, увеличив количество геометрических тел. Связка тел — куба и трех цилиндров — предлагается на рис. 5.57. Постройте врезки, например, как это сделано на рис. 5.58. Легко тонируйте композицию (рис. 5.59).

Видео:ТЕМА 2. ПОСТРОЕНИЕ КУБА, ЦИЛИНДРА, ШАРАСкачать

ТЕМА 2.  ПОСТРОЕНИЕ КУБА, ЦИЛИНДРА, ШАРА

Врезка пирамиды и цилиндра

Как врезать цилиндр в пирамиду

ЦЕЛЬ ЗАДАНИЯ. Научиться строить врезку тела вращения и тела с наклонными гранями.

ПОСТАНОВКА ЗАДАНИЯ. Постройте врезку пи­рамиды и цилиндра.

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ЗАДАНИЯ.

Изобразите пирамиду и цилиндр (рис. 5.152). Пред­ставьте линию врезки. Наклонные грани пирамиды рассекают цилиндр по эллипсам. Сечение цилинд­ра основанием пирамиды — окружность. Сечение пирамиды верхним основанием цилиндра — квадрат, подобный квадрату основания пирамиды. Из всех этих сечений, пожалуй, наиболее сложные — сече­ния цилиндра наклонными плоскостями.
Для построения таких сечений необходимы две вспомогательные вертикальные секущие плоско­сти, проходящие через ось цилиндра. Эти плоско­сти перпендикулярны друг другу и наклонным гра­ням пирамиды (рис. 5.153 и 5.154).

Читайте также: Задний тормозной цилиндр сузуки гранд витара 2008

Как врезать цилиндр в пирамиду

Постройте сначала линию пересечения цилин­дра и наклонной грани пирамиды, выделенной на рис. 5.155.

Как врезать цилиндр в пирамиду

Найдите такое ее положение, которое даст гармоничные соотношения поверхностей гео­метрических тел. Зафиксируйте нижнюю точку се­кущего эллипса — точку А на пересечении верти­кальной вспомогательной плоскости и наклонной грани пирамиды (рис. 5.156), постройте сечение (рис. 5.157).

Как врезать цилиндр в пирамиду

После построения первой линии сечения взаим­ное положение геометрических тел стало опреде­ленным, что дает возможность построить остальные
линии сечения.
Вариантов дальнейшего построения может быть несколько. Например, если достроить сечение пи­рамиды вспомогательной плоскостью, которую мы уже использовали в построении наклонного сече­ния, то можно получить несколько опорных точек (рис. 5.158). Точки В и С определяют положение ли­нии сечения пирамиды верхним основанием цилин­дра, точка О — центр окружности сечения цилиндра горизонтальной плоскостью основания пирамиды, а точки D и Е — раскрытие эллипса этого сечения на вашем рисунке.

Как врезать цилиндр в пирамиду

Постройте горизонтальное сечение цилиндра (рис. 5.159), а затем по опорным точкам на пере­сечении пирамиды и второй вспомогательной се­кущей плоскости (рис. 5.160) постройте сечение цилиндра второй наклонной гранью пирамиды (рис. 5.161). В этом задании мы ограничимся пост­роением только видимых линий сечения. Однако, при необходимости, вы можете построить все ли­нии. Затем усильте основные линии рисунка (рис. 5.162) и тонируйте связку (рис. 5.163).

Как врезать цилиндр в пирамиду

Как врезать цилиндр в пирамиду

Можно предложить и другую последователь­ность построения. Она уместна тогда, когда положе­ние геометрических тел заранее определено, на­пример, в ортогональных проекциях (рис. 5.164). В этом случае лучше начать построение с вертикаль­ного цилиндра. Задайте перспективные направле­ния при помощи двух вертикальных секущих плос­костей (рис. 5.165) — эти плоскости впоследствии пригодятся нам в построении наклонных сечений.
Чтобы изобразить пирамиду, определите, где плос­кость ее основания пересекает вертикальную ось цилиндра, и постройте секущий эллипс (рис. 5.166).

Как врезать цилиндр в пирамиду

Определите положение точки центра основания пи­рамиды относительно центра окружности сечения (рис. 5.167), для чего сначала опишите вокруг секу­щего эллипса квадрат. Центр основания пирамиды смещен относительно центра окружности сечения по диагонали этого квадрата примерно на треть ра­диуса (это следует из плана). Нарисуйте квадрат ос­нования пирамиды. Из точки пересечения диагона­лей квадрата поднимите вертикаль, отложите на ней высоту пирамиды и достройте наклонные ребра (рис. 5.168). Таким образом мы получили связку с точным положением геометрических тел в про­странстве.

Как врезать цилиндр в пирамиду

Теперь достройте линию сечения. Чтобы пост­роить сечение цилиндра наклонными гранями пира­миды, воспользуйтесь вспомогательными вертикальными секущими плоскостями, проходящими че­рез вертикальную ось цилиндра (мы изобразили их в самом начале построения). Выберите любую вспомогательную плоскость. Линия сечения этой плоскостью цилиндра — вертикальный прямоуголь­ник. Линия сечения пирамиды этой же вспомога­тельной плоскостью — трапеция. На рис. 5.169 пря­моугольник и трапеция графически выделены тоном и толстой линией. На пересечении прямоугольника и трапеции получите опорные точки, необходимые для дальнейшего построения. Изобразите наклон­ное сечение цилиндра. Затем проделайте эти же действия с другой вспомогательной секущей плос­костью (рис. 5.170).

Как врезать цилиндр в пирамиду

Закончите построение (рис. 5.171) и тонируйте связку (рис. 5.172).

🔥 Видео

Пересечение многогранников. Пирамида с призматическим вырезом.Скачать

Пересечение многогранников. Пирамида с призматическим вырезом.

Урок ИЗО в школе. 6 класс. Урок № 11. «Натюрморт из геометрических тел».Скачать

Урок ИЗО в школе. 6 класс. Урок № 11.  «Натюрморт из геометрических тел».

Делаем энергетическую пирамидуСкачать

Делаем энергетическую пирамиду

КАК СДЕЛАТЬ УСЕЧЁННУЮ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? УСЕЧЁННАЯ ШЕСТИУГОЛЬНАЯ ПИРАМИДА. | #RAIDOTVСкачать

КАК СДЕЛАТЬ УСЕЧЁННУЮ ШЕСТИУГОЛЬНУЮ ПИРАМИДУ ИЗ БУМАГИ? УСЕЧЁННАЯ ШЕСТИУГОЛЬНАЯ ПИРАМИДА. | #RAIDOTV

ТЕМА 6. ГЕОМЕТРИЧЕСКАЯ ВРЕЗКА ШЕСТИГРАННОЙ ПРИЗМЫ, ПИРАМИДЫ И КОНУСА.Скачать

ТЕМА 6.  ГЕОМЕТРИЧЕСКАЯ ВРЕЗКА ШЕСТИГРАННОЙ ПРИЗМЫ, ПИРАМИДЫ И КОНУСА.

Как склеить и использовать пирамиду - How to glue and use a pyramidСкачать

Как склеить и использовать пирамиду - How to glue and use a pyramid

Как сделать цилиндр из бумаги.Скачать

Как сделать цилиндр из бумаги.

Врезка | Цилиндр и конус | Автор Прохоренко КонстантинСкачать

Врезка | Цилиндр и конус | Автор Прохоренко Константин

Натюрморт из геометрических предметовСкачать

Натюрморт из геометрических предметов

Вводное занятие по композиции. Базовый уровеньСкачать

Вводное занятие по композиции. Базовый уровень
Поделиться или сохранить к себе:
Технарь знаток