Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
- Как посчитать объем цилиндра
- Онлайн калькулятор
- Зная радиус r и высоту h
- Формула
- Пример
- Зная диаметр d и высоту h
- Формула
- Пример
- Зная площадь основания So и высоту h
- Формула
- Пример
- Зная площадь боковой поверхности Sb и высоту h
- Формула
- Пример
- Радиус и высота цилиндра
- Свойства
- Нахождение объема цилиндра: формула и задачи
- Формула вычисления объема цилиндра
- Через площадь основания и высоту
- Через радиус основания и высоту
- Через диаметр основания и высоту
- Примеры задач
- Радиус и высота цилиндра
- Свойства
- Калькулятор для цилиндра
- Калькулятор для цилиндра: комментарий
- Прямой круговой цилиндр
- Формулы для прямого кругового цилиндра:
- Скошенный цилиндр
- Нахождение радиуса цилиндра: формула и примеры
- Формулы вычисления радиуса цилиндра
- 1. Через объем и высоту
- 2. Через площадь боковой поверхности
- 3. Через полную площадь поверхности
- Примеры задач
- 🔥 Видео
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Как посчитать объем цилиндра
Видео:Нати высоту цилиндра возможно, если известен диаметр и площадь боковой поверхностиСкачать
Онлайн калькулятор
Найти чему равен объем цилиндра (V) можно зная (либо-либо):
- радиус r и высоту h цилиндра
- диаметр d и высоту h цилиндра
- площадь основания So и высоту h цилиндра
- площадь боковой поверхности Sb и высоту h цилиндра
Подставьте значения в соответствующие поля и получите результат.
Зная радиус r и высоту h
Чему равен объем цилиндра V если известны его радиус r и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:
Читайте также: Правильная четырехугольная призма описана около цилиндра высота равна 2 боковое
V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3
Зная диаметр d и высоту h
Чему равен объем цилиндра V если известны его диаметр d и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:
V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3
Зная площадь основания So и высоту h
Чему равен объем цилиндра V если известны его площадь основания So и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:
Зная площадь боковой поверхности Sb и высоту h
Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:
V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3
Видео:Цилиндр - расчёт площади, объёма.Скачать
Радиус и высота цилиндра
Видео:Задача на вычисление высоты цилиндраСкачать
Свойства
Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr
Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)
Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h
Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )
В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2
Видео:№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать
Нахождение объема цилиндра: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем цилиндра и разберем примеры решения задач.
Видео:Видеоурок по математике "Цилиндр"Скачать
Формула вычисления объема цилиндра
Через площадь основания и высоту
Объем (V) цилиндра равняется произведению его высоты и площади основания.
Через радиус основания и высоту
Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:
V = π ⋅ R 2 ⋅ H
Примечание: в расчетах значение числа π округляется до 3,14.
Через диаметр основания и высоту
Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:
Читайте также: Цилиндр из мыльного пузыря
Видео:Объём цилиндраСкачать
Примеры задач
Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.
Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .
Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.
Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .
Видео:Объем цилиндраСкачать
Радиус и высота цилиндра
Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать
Свойства
Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr
Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)
Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h
Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )
В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2
Видео:КАК НАЙТИ ОБЪЕМ ШАРА, ЕСЛИ ИЗВЕСТЕН РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать
Калькулятор для цилиндра
Онлайн калькулятор для цилиндра позволяет по известным данным вычислить:
- объем цилиндра,
- площадь основания, площадь боковой поверхности и площадь полной поверхности цилиндра,
- элементы: радиус, диаметр и высоту.
Калькулятор для цилиндра: комментарий
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).
Обозначения для цилиндра:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h1 и h2 — минимальная и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.
Прямой круговой цилиндр
Круговым называется цилиндр, если его направляющая является окружностью. Прямым называется цилиндр, если его образующая перпендикулярна основаниям.
Читайте также: Такт в ходе которого происходит очищение цилиндра от отработавших газов
Формулы для прямого кругового цилиндра:
Найти объем цилиндра , если известны:
- радиус и высота цилиндра: V=πR 2 h
- диаметр и высота цилиндра: V=πD 2 /4h
- площадь и высота цилиндра: V=Sоh
Площадь(Sб) боковой поверхности прямого кругового цилиндра
Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h
Площадь(Sо) основания цилиндра
Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR 2 .
Площадь(S) полной поверхности прямого кругового цилиндра
Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR 2 =2πR(h+R)
Формулы нахождения радиуса и диаметра по:
- высоте и объему: R=√(V/πh) , D=2*√(V/πh)
- площади боковой поверхности и высоте: R=Sб/2πh , D=2*Sб/2πh
- площади основания и высоте: R=√(Sо/π) , R=2*√(Sо/π)
Формулы нахождения высоты по:
- радиусу и объему: h=V/πR 2
- площади боковой поверхности и радиусу: h=Sб/2πR
- площади полной поверхности и радиусу: h=S/2πR-R
Скошенный цилиндр
Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h1 и максимальной высотой h2.
Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать
Нахождение радиуса цилиндра: формула и примеры
В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Формулы вычисления радиуса цилиндра
1. Через объем и высоту
Радиус цилиндра рассчитывается по формуле:
V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.
- R – радиус основания цилиндра, т.е. окружности;
- π – число, округленное значение которого равняется 3,14.
2. Через площадь боковой поверхности
Радиус цилиндра считается таким образом:
Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:
3. Через полную площадь поверхности
Данная формула получена следующим образом:
S – полная площадь поверхности фигуры, равная:
S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)
Возьмем первое выражение. Если перенести S в правую часть, получим:
2 π R 2 + 2 π Rh – S = 0
Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:
R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:
* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.
Видео:11 класс, 32 урок, Объем цилиндраСкачать
Примеры задач
Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.
Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.
Решение:
Применим формулу, в которой задействованы заданные величины:
Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.
Решение:
Используем третью формулу для нахождения неизвестной величины:
🔥 Видео
№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать
Длина окружности. Математика 6 класс.Скачать
Объем цилиндра. Урок 13. Геометрия 11 классСкачать
Урок 6 (осн). Вычисление и измерение объемаСкачать
11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Егэ.Длина окружности основания цилиндра равна 3 ,площадь боковой поверхности равна 6 .Найдите высотуСкачать
Стереометрия. ЕГЭ. Цилиндр и конус имеют общие основание и высотуСкачать