Как выглядит пирамида куб конус цилиндр

Авто помощник

Присмотритесь к окружающим нас предметам. Многие из них имеют форму геометрических тел или их сочетаний.

Форма деталей, встречающихся в технике, также представляет собой сочетание различных геометрических тел или их частей. Например, ось (рис. 124, а) образована в результате добавления к одному цилиндру другого цилиндра, меньшего по размерам, а втулка (рис. 124, б) получилась после того, как из цилиндра удалили другой цилиндр меньшего диаметра.

Как выглядит пирамида куб конус цилиндр

Рис. 124. Деталь как суумма или разность геометрических тел

Форма каждого геометрического тела и его изображений на чертеже имеет свои характерные признаки. Этим пользуются, чтобы облегчить чтение и выполнение чертежей.

Деталь мысленно расчленяют на отдельные составляющие ее части, имеющие изображения, характерные для известных нам геометрических тел.

Мысленное расчленение предмета на составляющие его геометрические тела называется анализом геометрической формы.

Из каких геометрических тел состоит деталь, изображенная на рис. 125?

Как выглядит пирамида куб конус цилиндр

Рис. 125. Заготовка ключа

Форма детали состоит из усеченного конуса, цилиндра, куба, цилиндра, части шара (рис. 126, а). Из большего цилиндра удален элемент цилиндрической формы.

После такого анализа форму детали представить легче (рис. 126, б). Поэтому необходимо знать характерные особенности проекций геометрических тел.

Как выглядит пирамида куб конус цилиндр

Рис. 126. Анализ геометрической формы заготовки ключа: а — элементы детали; б — общий вид детали

Цилиндр и конус. Проекции цилиндра и конуса показаны на рис. 127, а и б. Круги, лежащие в основаниях цилиндра и конуса, расположены параллельно горизонтальной плоскости проекций; проекции оснований на горизонтальную плоскость будут также кругами.

Фронтальная и профильная проекция цилиндра — прямоугольники, а конуса — равнобедренные треугольники.

На рис. 127в, дан чертеж усеченного конуса, горизонтальная проекция которого представляет собой две окружности, а фронтальная проекция — равнобочную трапецию.

Выполнение чертежей цилиндра и конуса начинают с проведения осей симметрии.

Из рис. 127, а видно, что фронтальная и профильная проекции цилиндра одинаковы. То же можно сказать о проекциях конуса. Поэтому в данном случае профильные проекции на чертеже лишние. На рисунке они даны лишь для того, чтобы показать, какую форму имеют все три проекции цилиндра и конуса.

Размеры цилиндра и конуса определяются высотой h и диаметром основания d. Для усеченного конуса указывают высоту h и диаметры обоих оснований D и d.

Как выглядит пирамида куб конус цилиндр

Рис. 127. Цилиндр и конус: а, б и в — комплексные чертежи; построения изометрической проекции; г, д и е — последовательность

Знак диаметра ∅ позволяет определять форму предмета и по одной проекции (рис. 128).

Как выглядит пирамида куб конус цилиндр

Рис. 128. Рациональное выполнение изображений цилиндра и конуса

Для построения изометрической проекции цилиндра и конуса (см. рис. 127, г и д) проводят оси х и у, на которых строят ромб со стороной, равной диаметру предмета, в ромб вписывают овал (построение овала см. рис. 96); вдоль оси z откладывают высоту предмета. Для цилиндра и усеченного конуса строят второй овал и проводят касательные к овалам.

Куб и прямоугольный параллелепипед. При проецировании куб располагают так, чтобы его грани были параллельны плоскостям проекций. Тогда на параллельных плоскостях грани изобразятся в натуральную величину, т. е. квадратами, а на перпендикулярных плоскостях — прямыми линиями. Проекциями куба являются три равных квадрата (рис. 129, а).

Построение изометрической проекции куба показано на рис. 129, в.

Прямоугольный параллелепипед проецируется подобно кубу. На рис. 129, б приведены три его проекции — прямоугольники.

На чертеже куба и параллелепипеда проставляют три размера: длину, высоту и ширину.

Как выглядит пирамида куб конус цилиндр

Рис. 129. Куб и прямоугольный параллелепипед: а и б — комплексные чертежи; в — последовательность построения изометрической проекции

Читайте также: Размеры шпильки цилиндра иж юпитер 5

На рис. 130, а приведено наглядное изображение детали, а на рис. 130, б дан ее чертеж. Деталь состоит из двух прямоугольных параллелепипедов, имеющих по две квадратные грани. Обратите внимание, как проставлены на чертеже размеры.

Как выглядит пирамида куб конус цилиндр

Рис. 130. Рациональное выполнение чертежа

Применение условного знака □ позволило вычертить деталь в одной проекции. Тонкие пересекающиеся линии на чертеже означают, что отмеченные ими поверхности — плоские.

Правильные треугольная и шестиугольная призмы. Основания призм, параллельные горизонтальные плоскости проекций, изображаются на ней в натуральную величину, а на фронтальной и профильной плоскостях — в виде прямых линий. Боковые грани изображаются в натуральную величину на плоскостях проекций, которым они параллельны, и в виде линий на тех плоскостях, которым они перпендикулярны (рис. 131, а и б). Грани, наклонные к плоскостям проекций, изображаются искаженными.

Как выглядит пирамида куб конус цилиндр

Рис. 131. Правильные призмы: а и б — комплексные чертежи; в и г — последовательность построения изометрической проекции

Размеры призм определяются высотой и размерами фигуры основания. Штрихпунктирными линиями на чертежах проводят оси симметрии.

Построение изометрии призм (рис. 131, в и г) начинают с основания. Затем из каждой вершины основания восставляют перпендикуляры, откладывают на них высоту и проводят линии, параллельные ребрам основания.

Выполнение чертежей начинают также с горизонтальной проекции.

Правильная четырехугольная пирамида. Квадратное основание пирамиды проецируется на горизонтальную плоскость в натуральную величину. На проекции основания пирамиды диагоналями изображаются боковые ребра, идущие от вершин основания к вершине пирамиды (рис. 132, а). Фронтальная и профильная проекции пирамиды — равнобедренные треугольники.

Размеры пирамиды определяются длиной b двух сторон основания и высотой h.

Построение изометрической проекции пирамиды (рис. 132, б) начинают с основания. Затем из центра полученной фигуры восставляют перпендикуляр, откладывают на нем высоту и соединяют полученную точку с вершинами основания.

Как выглядит пирамида куб конус цилиндр

Рис. 132. Правильная пирамида: а — комплексный чертеж; б — последовательность построения изометрической проекции

Шар. Все проекции шара (рис. 133) — круги, диаметр которых равен диаметру шара. На каждой проекции проводят центровые линии.

Как выглядит пирамида куб конус цилиндр

Рис. 133. Комплексный чертеж шара

Тор. На рис. 134, а даны две проекции тора (кругового кольца). На фронтальной проекции в натуральную величину изображается окружность, в результате вращения которой образуется тор. Горизонтальная проекция представляет собой две концентрические окружности. Радиус внешней окружности больше радиуса внутренней на величину, равную диаметру образующей окружности.

Как выглядит пирамида куб конус цилиндр

Рис. 134. Тор: а — две проекции; б — деталь, имеющая торовые поверхноти

Размеры тора определяются диаметром (или радиусом) образующей окружности и внутренним (или наружным) диаметром кольца. На всех проекциях проводят оси симметрии. Среди поверхностей детали, изображенной на рис. 134, б, есть две торовые поверхности. Радиус образующей окружности одного тора 16 мм, другого — 12 мм.

Ответьте на вопросы

Как выглядит пирамида куб конус цилиндр

1. В чем заключается анализ геометрической формы предметов? Каково его значение?

2. Что общего и в чем отличие между проекциями цилиндра и конуса?

3. Какую форму имеют проекции куба и прямоугольного параллелепипеда?

4. Что означают тонкие пересекающиеся линии на проекции предмета ?

5. Какую форму имеют проекции правильной треугольной и шестиугольной призм, правильной четырехугольной пирамиды?

6. Сколькими и какими размерами определяется величина цилиндра, конуса, куба, параллелепипеда, правильных треугольной и шестиугольной призм, правильной четырехугольной пирамиды, шара, тора?

7. Для каких геометрических тел при наличии размеров можно ограничиться одной проекцией?

8. У каких геометрических тел все проекции одинаковы?

Задания к § 19

Упражнение 62

Как выглядит пирамида куб конус цилиндр

Запишите в рабочей тетради наименования и размеры геометрических тел, на которые можно расчленить формы деталей (рис. 135, а и б).

Как выглядит пирамида куб конус цилиндр

Форма записи:

Упражнение 63

Как выглядит пирамида куб конус цилиндр

Вычертите по три проекции и выполните технические рисунки следующих геометрических тел: цилиндра, конуса, правильных треугольной и шестиугольной призм и пирамиды. При выполнении чертежей не забудьте провести осевые и центровые линии. Правильно нанести размеры, следуя примерам, данным на рис. 127, а и б; 131, а и б; 135, а. Величину деталей определите обмериванием изображений на этих рисунках. Чертежи выполните в масштабе 5 : 1.

Читайте также: В цилиндре образующая перпендикулярна плоскости основания 30 корень из 2

Упражнение 64

Как выглядит пирамида куб конус цилиндр

Пользуясь конструктором для моделирования А. Н. Сальникова, сложите указанные Вам преподавателем модели, привете денные на рис. 136, а — з. (Конструктор для моделирования A. H. Сальникова состоит из элементов, представляющих собой геометрические тела или их части. Он входит в комплект оборудования кабинета черчения.) При отсутствии конструктора изготовьте модели из дерева, пенопласта или другого материала.

Как выглядит пирамида куб конус цилиндр

Рис. 136. Задания на моделирование

Упражнение 65

Как выглядит пирамида куб конус цилиндр

Рассмотрите чертежи, приведенные на рис. 137, а — в, и ответьте на следующие вопросы применительно к каждому чертежу:

Как выглядит пирамида куб конус цилиндр

Рис. 137. Задания для упражнений

1. Какие виды даны на чертеже?

2. Из каких геометрических тел состоит деталь?

3. Каковы размеры каждого геометрического тела?

4. Какова шероховатость поверхностей детали? Выполните чертежи геометрических тел, на которые можно расчленить деталь, и технический рисунок детали.

Упражнение 66

Как выглядит пирамида куб конус цилиндр

Начертите деталь по описанию, приведенному ниже, и нанесите на чертеж размеры.

Деталь имеет форму цилиндра диаметром 35 мм. В центре одного горца просверлено глухое отверстие диаметром 20 и длиной 30 мм. Другой конец детали — квадратная призма. Размеры основания призмы 24 х 24 мм, высота ее 30 мм. Общая длина детали 90 мм. Шероховатость всех поверхностей соответствует Rz 25.

Упражнение 67

Как выглядит пирамида куб конус цилиндр

Чертежи деталей на рис. 138 содержат один, два или три вида. Запишите в рабочей тетради, какие чертежи выполнены наиболее рационально, и объясните почему.

Как выглядит пирамида куб конус цилиндр

Форма записи:

Как выглядит пирамида куб конус цилиндр

Рис. 138. Задания на определение рациональности чертежа

Видео:Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙСкачать

Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙ

Геометрические объемные фигуры и их названия: шар, куб, пирамида, призма, тетраэдр

Как выглядит пирамида куб конус цилиндр

Геометрические объемные фигуры — это твердые тела, которые занимают ненулевой объем в евклидовом (трехмерном) пространстве. Эти фигуры изучает раздел математики, который носит название «пространственная геометрия». Знания о свойствах объемных фигур применяются в инженерии и в науках о природе. Рассмотрим в статье вопрос, геометрические объемные фигуры и их названия.

Видео:Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

Геометрические объемные тела

Поскольку эти тела имеют конечную размерность в трех пространственных направлениях, то для их описания в геометрии используют систему из трех координатных осей. Эти оси обладают следующими свойствами:

  1. Они ортогональны друг другу, то есть перпендикулярны.
  2. Эти оси нормализированы, то есть базисные вектора каждой оси имеют одинаковую длину.
  3. Любая из осей координат — это результат векторного произведения двух других.

Говоря о геометрических объемных фигурах и их названиях, следует отметить, что все они принадлежат к одному из 2-х больших классов:

  1. Класс полиэдров. Эти фигуры, исходя из названия класса, имеют прямые ребра и плоские грани. Грань — это плоскость, которая ограничивает фигуру. Место соединения двух граней называется ребром, а точка соединения трех граней — это вершина. К полиэдрам относятся геометрическая фигура куб, тетраэдры, призмы, пирамиды. Для этих фигур справедлива теорема Эйлера, которая устанавливает связь между числом сторон (С), ребер (Р) и вершин (В) для каждого полиэдра. Математически эта теорема записывается так: С + В = Р + 2.
  2. Класс круглых тел или тел вращения. Эти фигуры имеют хотя бы одну поверхность, образующую их, изогнутой формы. Например, шар, конус, цилиндр, тор.

Что касается свойств объемных фигур, то следует выделить два самых важных из них:

  1. Наличие определенного объема, который фигура занимает в пространстве.
  2. Наличие у каждой объемной фигуры площади поверхности.

Оба свойства для каждой фигуры описываются конкретными математическими формулами.

Рассмотрим ниже самые простые геометрические объемные фигуры и их названия: куб, пирамиду, призму, тетраэдр и шар.

Видео:4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конусСкачать

4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

Фигура куб: описание

Как выглядит пирамида куб конус цилиндр

Под геометрической фигурой куб понимают объемное тело, которое образовано 6-тью квадратными плоскостями или поверхностями. Также эту фигуру называют правильный гексаэдр, поскольку она имеет 6 сторон, или прямоугольный параллелепипед, так как он состоит из 3-х пар параллельных сторон, которые взаимно перпендикулярны друг другу. Называют куб и прямоугольной призмой, у которой основание является квадратом, а высота равна стороне основания.

Читайте также: Вакуумный усилитель тормозного цилиндра тойота ипсум

Поскольку куб является многогранником или полиэдром, то для него можно применить теорему Эйлера, чтобы определить число его ребер. Зная, что число сторон равно 6, а вершин у куба 8, число ребер равно: Р = С + В — 2 = 6 + 8 — 2 = 12.

Если обозначить буквой «a» длину стороны куба, тогда формулы для его объема и площади поверхности будут иметь вид: V = a 3 и S = 6*a 2 , соответственно.

Видео:Куб, шар, пирамида, цилиндр, конусСкачать

Куб, шар, пирамида, цилиндр, конус

Фигура пирамида

Как выглядит пирамида куб конус цилиндр

Пирамида — это полиэдр, который состоит из простого многогранника (основание пирамиды) и треугольников, которые соединяются с основанием и имеют одну общую вершину (вершина пирамиды). Треугольники называются боковыми гранями пирамиды.

Геометрические характеристики пирамиды зависят от того, какой многоугольник лежит в ее основании, а также от того, является ли пирамида прямой или косой. Под прямой пирамидой понимают такую пирамиду, для которой перпендикулярная основанию прямая, проведенная через вершину пирамиды, пересекает основание в ее геометрическом центре.

Одной из простых пирамид является четырехугольная прямая пирамида, в основании которой лежит квадрат со стороной «a», высота этой пирамиды «h». Для этой фигуры пирамиды объем и площадь поверхности будут равны: V = a 2 *h/3 и S = 2*a*√(h 2 +a 2 /4) + a 2 , соответственно. Применяя теорему Эйлера для нее, с учетом того, что число граней равно 5, и число вершин равно 5, получаем количество ребер: Р = 5 + 5 — 2 = 8.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Фигура тетраэдр: описание

Как выглядит пирамида куб конус цилиндр

Под геометрической фигурой тетраэдр понимают объемное тело, образованное 4-мя гранями. Исходя из свойств пространства, такие грани могут представлять только треугольники. Таким образом, тетраэдр является частным случаем пирамиды, у которой в основании лежит треугольник.

Если все 4-ре треугольника, образующие грани тетраэдра, являются равносторонними и равными между собой, то такой тетраэдр называется правильным. Этот тетраэдр имеет 4 грани и 4 вершины, число ребер составляет 4 + 4 — 2 = 6. Применяя стандартные формулы из плоской геометрии для рассматриваемой фигуры, получаем: V = a 3 * √2/12 и S = √3*a 2 , где a — длина стороны равностороннего треугольника.

Интересно отметить, что в природе некоторые молекулы имеют форму правильного тетраэдра. Например, молекула метана CH4, в которой атомы водорода расположены в вершинах тетраэдра, и соединены с атомом углерода ковалентными химическими связями. Атом углерода находится в геометрическом центре тетраэдра.

Простая в изготовлении форма фигуры тетраэдр используется также в инженерии. Например, тетраэдрическую форму используют при изготовлении якорей для кораблей. Отметим, что космический зонд НАСА, Mars Pathfinder, который совершил посадку на поверхность Марса 4 июля 1997 года, также имел форму тетраэдра.

Видео:ЦИЛИНДР // КОНУС // ШАРСкачать

ЦИЛИНДР // КОНУС // ШАР

Фигура призма

Как выглядит пирамида куб конус цилиндр

Эту геометрическую фигуру можно получить, если взять два многогранника, расположить их параллельно друг другу в разных плоскостях пространства, и соединить их вершины соответствующим образом между собой. В итоге получится призма, два многогранника называются ее основаниями, а поверхности, соединяющие эти многогранники, будут иметь форму параллелограммов. Призма называется прямой, если ее боковые стороны (параллелограммы) являются прямоугольниками.

Призма — это полиэдр, поэтому для нее верна теорема Эйлера. Например, если в основании призмы лежит шестиугольник, тогда, количество сторон у призмы равно 8, а количество вершин — 12. Число ребер будет равно: Р = 8 + 12 — 2 = 18. Для прямой призмы высотой h, в основании которой лежит правильный шестиугольник со стороной a, объем равен: V = a 2 *h*√3/4, площадь поверхности равна: S = 3*a*(a*√3 + 2*h).

Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Фигура шар

Как выглядит пирамида куб конус цилиндр

Говоря о простых геометрических объемных фигурах и их названиях, следует упомянуть шар. Под объемным телом под названием шар понимают тело, которое ограничено сферой. В свою очередь, сфера — это совокупность точек пространства, равноудаленных от одной точки, которая называется центром сферы.

Поскольку шар относится к классу круглых тел, то для него не существует понятия о сторонах, ребрах и вершинах. Площадь поверхности сферы, ограничивающей шар, находится по формуле: S = 4*pi*r 2 , а объем шара можно вычислить по формуле: V = 4*pi*r 3 /3, где pi — число пи (3,14), r — радиус сферы (шара).

💥 Видео

Тема 71. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конусСкачать

Тема 71. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTVСкачать

КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTV

Геометрические тела: пирамида, конусСкачать

Геометрические тела: пирамида, конус

Учим объёмные геометрические фигуры с паровозиком Чух-Чухом - часть 1. Мультик для детейСкачать

Учим объёмные геометрические фигуры с паровозиком Чух-Чухом - часть 1. Мультик для детей

Объемные геометрические фигуры. Все выпуски. Наше всё!Скачать

Объемные геометрические фигуры. Все выпуски. Наше всё!

Кубик/Пирамида/Конус/Цилиндр/Параллелепипед/Разные Рубики в мире/_A Rom@Скачать

Кубик/Пирамида/Конус/Цилиндр/Параллелепипед/Разные Рубики в мире/_A Rom@

Геометрические тела.Скачать

Геометрические тела.

ЦИЛИНДР. КОНУС. ШАР.Скачать

ЦИЛИНДР. КОНУС. ШАР.

Конус. 11 класс.Скачать

Конус. 11 класс.

Шар, куб, цилиндрСкачать

Шар, куб, цилиндр

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ

Построение конусаСкачать

Построение конуса

Геометрические тела. Раннее развитие. Шар, куб, цилиндр, конус.Скачать

Геометрические тела. Раннее развитие. Шар, куб, цилиндр, конус.
Поделиться или сохранить к себе:
Технарь знаток