Коэффициент трения шин с дорогой

Пока все колёса вращаются, тормозные силы, действующие на транспортное средство, могут быть предсказаны с помощью Уравнения (3-19). Тем не менее, тормозная сила может увеличиться только до предела трения сцепления между шиной и дорогой.

Есть два основных механизма, ответственных за трение сцепления, как показано на Рисунке 3.4. Поверхностное сцепление возникает в результате межмолекулярных связей между резиной и заполнителем в дорожном покрытии. Сцепление компонентов является большим из двух механизмов на сухих дорогах, но значительно снижается, когда дорожная поверхность покрыта водой; следовательно, на мокрой дороге трение уменьшается.

Коэффициент трения шин с дорогой

Рис. 3.4. Механизмы трения между шиной и дорогой [4].

Механизм запаздывания (гистерезиса) в материале представляет потери энергии в резине, так как она деформируется при скольжении по заполнителю дороги. Трение материала (или гистерезисное) не сильно зависит от воды на поверхности дороги, таким образом, лучшее сцепление на мокрой поверхности достигается с шинами, которые имеют в протекторе высокогистерезисную резину.

И трение сцепления, и гистерезисное трение зависят от скольжения небольшой величины, происходящего при взаимодействии шины с дорогой. Дополнительное скольжение наблюдается в результате деформации резиновых элементов протектора шины, так как они деформируются, чтобы развивать и поддерживать тормозное усилие. Этот механизм проиллюстрирован на Рисунке 3.5. Когда такой элемент входит в контактное пятно шины, он недеформирован. Когда он доходит до центра контакта шины, для поддержания силы трения в шине должна произойти деформация. Деформация увеличивается от передней к задней части пятна контакта шины, а сила, развиваемая каждым элементом, пропорционально увеличивается в направлении спереди назад. При высоком уровне торможения элементы на заднем краю пятна контакта начинают скользить по поверхности, а тормозное усилие от шины может начать снижаться.

Коэффициент трения шин с дорогой

Рис. 3.5. Тормозные деформации в пятне контакта.

Из-за этих механизмов тормозное усилие и скольжение проявляются совместно. Сила торможения (выраженная в виде коэффициента F x /F z ) в зависимости от скольжения показана на Рисунке 3.6.

Коэффициент трения шин с дорогой

Рис. 3.6. Зависимость тормозного коэффициента от скольжения [4].

Скольжение шины определяется отношением скорости скольжения в пятне контакта (скорость движения вперёд — скорость окружности шины) к скорости движения вперёд:

Коэффициент трения шин с дорогой

V = Скорость движения вперёд транспортного средства

ω = Скорость вращения шины (рад/сек)

Коэффициент торможения, получающийся из трения сцепления и гистерезисного трения, с увеличением скольжения в зависимости от условий возрастает по величине от 10 до 20%. При мокрой дороге вклад трения сцепления уменьшается, таким образом, суммарный коэффициент ниже. Пиковый коэффициент является ключевым свойством, обычно обозначаемым μ р . Он отражает максимальное тормозное усилие, которое может быть получено от конкретной пары трения шина-дорога. При более высоком скольжении этот коэффициент уменьшается, достигая наименьшего значения при 100% скольжении, представляющего состояние полной блокировки и обозначаемого μ s . В ситуации торможения μ р соответствует наивысшей силе торможения, которая может быть создана, и которую можно достичь только теоретически, потому что в этой точке система неустойчива. Для заданного выходного уровня тормозного момента, как только колесо замедляется, чтобы достичь μ p , любое нарушение этого условия приводит к избытку тормозного момента, что вызывает дальнейшее замедление колеса. Увеличение скольжения уменьшает тормозное усилие, так что замедление колеса продолжается, и колесо приближается к блокировке. Только отпускание тормоза (как при контроле антиблокировки) может вернуть колесо к работе при μ p .

В дополнение к шине и дороге, как ключевым элементам в определении доступного трения сцепления, как показано далее, важными являются и другие переменные.

Видео:Понимание сопротивления качению!Скачать

Понимание сопротивления качению!

Всё о коэффициенте сцепления шин с дорогой

Коэффициент трения шин с дорогой

Коэффициент трения шин с дорогой

Как шины влияют на безопасность, когда вы ведете машину по шоссе? Какие факторы помогают предотвратить занос и позволяют контролировать ваш автомобиль при повороте и остановке?

Вопросы безопасности на дорогах включают не только выбор правильной резины, но и учитывают фактор дорожного покрытия, технические характеристики транспортного средства ТС, другие факторы о которых узнаете ниже.

Видео:Низкий коэффициент сцепления шин с дорогойСкачать

Низкий коэффициент сцепления шин с дорогой

Измерение коэффициента сцепления дорожного покрытия по ГОСТ 50597-93

Исследования проводились динамометрическим приборомПКРС-2, результаты сведены в таблицу, где указаны виды дорожного покрытия и их состояние в зависимости от погодных и климатических условий. С момента ввода этих коэффициентов прошло много лет. Изменились технологии строительства дорог, в частности контактная поверхность дорожного покрытия. Данные таблицы надо рассматривать, как ориентировочные.

Читайте также: Легковые шины continental icecontact 3

Коэффициент трения шин с дорогой

Совершенно ясно, что эти коэффициенты не есть величина постоянная, а зависят от многих факторов:

  • тип дорожного полотна, качество состояния,
  • состояние шин транспортного средства их скоростные, нагрузочные и другие характеристики, входящие в маркировку,
  • скорость движения ТС,
  • наличие веществ, снижающих сцепление в зоне контакта поверхности колеса и покрытия (грязь, пролитые ГСМ),
  • уклоны и опасные закругления автомобильной дороги.

Коэффициент сцепления между шиной и дорогой является одним из важных факторов, влияющих на безопасность дорожного движения. Состояние деформации шины различается в зависимости от силы торможения, вертикальной нагрузки на колесо.

Коэффициент трения шин с дорогой

Видео:Важность скольжения шинСкачать

Важность скольжения шин

Силы воздействия на участок поверхности шины во время торможения

Есть классическая формула в физике F =µN =µmg, которая связывает прямо пропорциональную зависимость силы трения от коэффициента сцепления контактирующих областей и прижимной силы. N равна произведению массы нагруженного колеса на ускорение свободного падения. Конечно распределение веса на переднюю ось будет больше при торможении, но эта классическая формула дает возможность понять какие факторы рассматриваются производителями шин, чтобы обеспечить безопасность автомобиля.

Коэффициент трения шин с дорогой

Зависимость тормозного пути от коэффициента сцепления шин с дорогой

Рисунок протектора колеса играет важную роль в определении трения или сопротивления скольжению. В сухих условиях на дорогах с твердым покрытием гладкая шина дает лучшую тягу, чем рифленый или узорчатый протектор, потому что имеется большая площадь контакта для создания сил трения. По этой причине резина, используемая для автогонок, имеет гладкую поверхность без рисунка протектора. К сожалению, гладкая шина развивает очень мало сцепления при влажных условиях, потому что фрикционный механизм уменьшается благодаря смазочной пленке воды между протектором и дорогой.

Рисунок канавки или каналы, по которым идет водоотвод, обеспечивает область прямого контакта между шиной и дорогой. Типовая шина дает коэффициенты сухого и влажного сцепления около 0,7 и 0,4 соответственно. Эти значения представляют собой компромисс между экстремальными значениями около 0,9 (сухих) и 0,1 (влажных), полученными с гладкой шиной.

Коэффициент трения шин с дорогой

Торможение на мокрой дороге

Когда автомобиль заторможен до жесткой остановки на сухой дороге, максимальная сила трения может быть больше, чем прочность протектора. В результате, вместо того, чтобы шина просто скользила по дороге, резина отрывается от протектора в области контакта шины и дороги. Несомненно, сопротивление протектора этому разрыву представляет собой сочетание прочности резины, канавок и щелей, составляющих дизайн протектора. Это тоже учитывают производители шин.

Коэффициент трения шин с дорогой

Кроме того, размер контактной зоны очень важен в автомобильных шинах, потому что тяга является динамической, а не статической, то есть она изменяется по мере того, как колесо катится вперед. Максимальный коэффициент трения может происходить где угодно в области контакта, и чем больше площадь, тем больше вероятность максимальной тяги.

Коэффициент трения шин с дорогой

Таким образом, при одинаковой нагрузке и на одной и той же сухой поверхности более широкий профиль имеет большую площадь контакта и развивает более высокую тягу, что приводит к большей тормозной способности. Хотя некоторые специалисты считают, что большая площадь снижает давление на единицу поверхности и таким образом прижимная сила становится меньше, а потому выигрыш в тормозной способности остается под вопросом.

Видео:Прибор для измерения коэффициента сцепления с дорогойСкачать

Прибор для измерения коэффициента сцепления с дорогой

Таблица 3. — Значения коэффициента сцепления шин с дорогой для различных дорожных условий

Асфальтобетон и цементобетон

Дорога, покрытая укатанным снегом

Рис. 2. — Схема возникновения аквапланирования колеса:

а — вода из пятна контакта удалена через канавки на протекторе шины; б — вода не успевает удаляться из пятна контакта полностью и передняя часть колеса всплывает на «водяной подушке»; в — колесо полностью теряет контакт с дорогой; Gк — сила тяжести, приходящаяся на колесо.

Чтобы избежать подобных явлений, необходимо снимать с эксплуатации шины при уменьшении глубины канавок протектора до минимально допустимой величины. При наличии на дороге больших луж не въезжать в них на высокой скорости.

При торможении (рис. 3) на колеса действует тормозная сила Pтр, которая создает тормозную реакцию между колесами и дорогой Rтр. Реакция Rтр складывается с Pк, Pп, Pв и вызывает замедление транспортного средства.

Силой, препятствующей замедлению транспортного средства, является сила инерции транспортного средства Pи, которая равна сумме сил сопротивления движению:

Читайте также: Как работает датчик давления шин тойота рав 4

Величина реакции торможения Rтр, Н, между колесами и дорогой не может превысить силы сцепления Pсц:

где — коэффициент сцепления; Ga — вес транспортного средства, Н.

Поскольку центр масс (ЦМ) транспортного средства расположен выше плоскости дороги на величину ha, сила инерции Pи создает момент Pи * ha, который увеличивает нагрузку передних колес и разгружает задние колеса. Изменение вертикальных реакций Rz1 и Rz2 приводит к соответствующему изменению сил сцепления на передних Pсц1 и задних Pсц2 колесах.

Рис. 3. — Силы, действующие на транспортное средство при торможении: Rтр1, Rтр2 — тормозная реакция между передними и задними колесами и дорогой соответственно; Pк1, Pк2 — силы сопротивления качению передних и задних колес соответственно; Pв — сила сопротивления воздуха; Pи — сила инерции Rz1, Rz2 — вертикальные реакции на передних и задних колесах соответственно; Ga — сила тяжести транспортного средства; ЦМ — центр масс; ha — высота ЦМ.

Чтобы тормозной путь был минимальным, необходимо обеспечить достижение момента блокировки передних и задних колес одновременно. А для сохранения устойчивости при торможении блокировка передних колес должна происходить несколько раньше, чем задних (об этом см. ниже «Торможение педалью тормоза при выжатой педали сцепления»).

Тормозная система проектируется так, чтобы обеспечить выполнение этого условия при полной массе автомобиля. Опережающая блокировка передних колес при уменьшении массы транспортного средства и снижении ее доли, приходящейся на задние колеса, достигается установкой регулятора тормозных сил, который ограничивает тормозную силу на задних колесах при уменьшении нагрузки автомобиля. В процессе эксплуатации транспортного средства необходимо следить за исправностью регулятора.

Криволинейное движение. Чтобы транспортное средство перешло от прямолинейного движения к криволинейному, к нему необходимо приложить поворачивающий момент. Момент создается поворотом управляемых колес на угол (рис. 4), при этом колеса становятся своего рода преградой на пути прямолинейного движения транспортного средства. А так как транспортное средство стремится двигаться по прямой, сила инерции «давит» на «преграду». Сопротивление «преграды» и является реакцией между повернутыми колесами и дорогой — Rк.п. Эта реакция может быть заменена двумя составляющими, одна из которых действует в плоскости вращения колеса и является дополнительной силой сопротивления качению при криволинейном движении Pк.к, а другая, направленная перпендикулярно плоскости вращения колеса к центру поворота, является реакцией между управляемыми колесами и дорогой Ry1, создающей поворачивающий момент M1.

Величина дополнительного сопротивления качению при криволинейном движении Pк.к увеличивается с возрастанием поперечной реакции Ry1 и угла поворота управляемых колес:

С учетом изложенного уравнения баланса сил продольного движения (3.7) и (3.9) на повороте примут соответственно следующий вид:

Pт = Pк + Pк.к +/- Pп + Pв + Pи (3.12)

Pи = Pтр + Pк + Pк.к +/- Pп + Pв (3.13)

Движение транспортного средства на повороте описывается двумя движениями: траекторией ЦМ и углом поворота относительно него продольной оси транспортного средства .

Как можно видеть из рис. 4, величина поворачивающего момента M1 равна произведению поперечной реакции на передних колесах Ry1 на расстояние a от ЦМ до передних колес:

При криволинейном движении в ЦМ возникает центробежная сила Pц, которая уравновешивается поперечной реакцией Ry. Эта реакция равна сумме поперечных реакций на передних Ry1 и задних Ry2 колесах (рис. 4а):

Поворачивающий момент M1 уравновешивается стабилизирующим моментом M2, который равен произведению поперечной реакции на задних колесах Py2 на расстояние b от ЦМ до задних колес:

Когда поворачивающий и стабилизирующий моменты равны между собой (M1 = M2), движение является устойчивым. В случае, если M1 станет больше M2, произойдет занос транспортного средства.

Величины центробежной силы Pц и уравновешивающей ее поперечной центростремительной реакции Ry равны произведению массы транспортного средства Ma на квадрат его скорости Va2, деленному на радиус поворота Rпв:

Поперечная реакция Ry распределяется между передними и задними колесами обратно пропорционально расстояниям от ЦМ до передних a и задних b колес соответственно. С учетом уравнения (3.17) получим:

Ry1 = b Ry / L = b Ma Va2 / Rпв L (3.18)

Ry2 = a Ry / L = a Ma Va2 / Rпв L (3.19)

где L — база транспортного средства.

Угловая скорость поворота продольной оси транспортного средства при прямолинейном движении равна нулю. При круговом движении с постоянной линейной скоростью Va угловая скорость поворота продольной оси равна . Поэтому при входе в поворот должен произойти разгон до угловой скорости поворота , а при выходе из поворота — замедление угловой скорости до нуля, т.е. возникает угловое ускорение .

Читайте также: Как узнать дату производства шины goodyear

Можно сказать, что транспортное средство является своего рода маховиком, который сначала необходимо раскрутить относительно ЦМ, а затем остановить. Поэтому для входа и выхода из поворота к транспортному средству необходимо приложить дополнительно поворачивающий и тормозной моменты соответственно. Так же как величина силы инерции пропорциональна произведению массы на линейное ускорение, так и при вращении величина момента инерции вращения Mиz равна произведению момента инерции массы транспортного средства Iz на угловое ускорение транспортного средства :

Чтобы создать момент инерции вращения Mиz, между колесами транспортного средства и дорогой должны возникнуть дополнительные поперечные реакции в виде пары сил Ryм (рис. 4б, в). Чтобы определить величину Ryм, необходимо разделить момент инерции вращения Mиz на плечо приложения сил — базу транспортного средства L. С учетом уравнения (3.20) получим выражение для определения Ryм:

Центростремительные реакции Ry1 и Ry2 всегда направлены в одну сторону — к центру поворота. Одна из реакций Ryм направлена к центру поворота, а другая — от центра. Поэтому на одних колесах происходит сложение реакций Ry и Ryм, а на других — их вычитание. При входе в поворот (см. рис. 4б) реакции на передних колесах Ry1 и Ryм складываются, а на задних колесах Ry2 и Ryм вычитаются. При выходе из поворота (см. рис. 4в) имеет место обратная картина. Реакции на передних колесах Ry1 и Ryм вычитаются, а на задних колесах Ry2 и Ryм складываются.

С учетом изложенного, суммарные поперечные реакции на передних и задних колесах будут равны:

Рис. 4. — Силы, действующие на транспортное средство на повороте:

а — движение повороте с постоянной скоростью ; б — вход в поворот, т.е. увеличение угловой скорости поворота от 0 до ; в — выход из поворота, т.е. уменьшение угловой скорости поворота от до 0; Rк.и. — реакция между повернутыми колесами и дорогой под действием силы инерции; Pк.к. — составляющая Rк.и, увеличивающая сопротивление качению на повороте; Ry1 — как составляющая Rк.и поперечная реакция между передними управляемыми колесами и дорогой, создающая поворачивающий момент; Ry2 — поперечная реакция между задними колесами и дорогой, создающая стабилизирующий момент; Pц — центробежная сила; Rу м — поперечная реакция на колесах, создающая пару сил; — угол поворота управляемых колес; Va — скорость автомобиля; — угловая скорость поворота автомобиля; — угловое ускорение поворота автомобиля; L — база автомобиля; a — расстояние между ЦМ и передними колесами; b — расстояние между ЦМ и задними колесами; Rпв — радиус поворота автомобиля.

Суммарные поперечные реакции на колесах и не могут превышать силы сцепления. Условие движения без поперечного скольжения колес запишется в следующем виде:

где — коэффициент сцепления; G1 — вес транспортного средства, приходящийся на передние колеса, Н; G2 — вес транспортного средства, приходящийся на задние колеса, Н.

Из изложенного следует, что когда на входе в поворот суммарная поперечная реакция на передних колесах достигнет силы сцепления, реакция будет меньше силы сцепления и начнется поперечное скольжение передних колес — снос транспортного средства. При выходе из поворота будет иметь место обратная картина. Поперечное скольжение начнется на задних колесах — произойдет занос транспортного средства.

Поперечное скольжение колес грузового автомобиля и автобуса возможно на скользком покрытии, когда . При более высоких значениях ограничение Py и, соответственно, скорости автомобиля Va происходит вследствие его опрокидывания.

Причиной поперечного опрокидывания транспортного средства на повороте является центробежная сила. На рис. 5 представлена схема сил, от которых зависит поперечная устойчивость транспортного средства. Поперечная сила Py действует на плече ha, равном высоте ЦМ, и стремится опрокинуть транспортное средство. Удерживает транспортное средство от опрокидывания его сила тяжести Ga, которая в случае равномерного распределения нагрузки в кузове действует на плече, равном половине ширины колеи транспортного средства Ka / 2. На основании изложенного условие движения без опрокидывания описывается уравнением:

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📸 Видео

    Почему у широкой покрышки больше сцепления? (by Engineering Explained)Скачать

    Почему у широкой покрышки больше сцепления? (by Engineering Explained)

    2 - Сцепление шин с дорогой и немного о дрэгеСкачать

    2 - Сцепление шин с дорогой и немного о дрэге

    Сцепление автомобиля с дорогой, типы резиныСкачать

    Сцепление автомобиля с дорогой, типы резины

    Шины! Сцепление с дорогой! Почему хорошие покрышки стоят дорого!Скачать

    Шины! Сцепление с дорогой! Почему хорошие покрышки стоят дорого!

    Как делают покрышкиСкачать

    Как делают покрышки

    Ширина шины: какая лучше? Простой способ выбратьСкачать

    Ширина шины: какая лучше? Простой способ выбрать

    окружность Камма (моделирование сцепления шин)Скачать

    окружность Камма (моделирование сцепления шин)

    Коэффициент сцепления: 0,1 Коэффициент скольжения: 0Скачать

    Коэффициент сцепления: 0,1 Коэффициент скольжения: 0

    Шины гоночного автомобиля, часть 1 | А.Плахотниченко, Осенняя школа Формулы Студент 2020Скачать

    Шины гоночного автомобиля, часть 1 | А.Плахотниченко, Осенняя школа Формулы Студент 2020

    Детали машин. Лекция 3.2. Фрикционные передачи и вариаторыСкачать

    Детали машин. Лекция 3.2. Фрикционные передачи и вариаторы

    Put Safety First: Grooving Roads Decreases AccidentsСкачать

    Put Safety First: Grooving Roads Decreases Accidents

    Влияние прижимной силы на сцепление шин | Effect of downforce on tire gripСкачать

    Влияние прижимной силы на сцепление шин | Effect of downforce on tire grip

    Grip of Road | Work For Friction Between Tyre and Road | CC Road | RMC Concrete |Скачать

    Grip of Road | Work For Friction Between Tyre and Road | CC Road | RMC Concrete |

    Технология повышения коэффициента сцепленияСкачать

    Технология повышения коэффициента сцепления

    Почему гоночная траектория не выигрывает гонки? | B2B На РусскомСкачать

    Почему гоночная траектория не выигрывает гонки? | B2B На Русском

    Что такое сопротивление качению шинСкачать

    Что такое сопротивление качению шин
Поделиться или сохранить к себе:
Технарь знаток