Команда памяти поступает в процессор по шине данных

Уроки 2 — 3
§1.2. Процессор и оперативная память
§1.2.1. Процессор

Логическая схема процессора

§1.2.2. Оперативная память

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Процессор

Логическая схема процессора

Команда памяти поступает в процессор по шине данных

Логическая схема процессора (рис. 1.5). Процессор является центральным устройством компьютера и выполняет команды программы, которая хранится в оперативной памяти. Команда программы поступает в процессор по шине данных и декодируется, т. е. определяется, какие действия необходимо выполнить и какие данные для этого требуются.

Команда памяти поступает в процессор по шине данных

Рис. 1.5. Упрощенная логическая схема одноядерного процессора

Данные запрашиваются из оперативной памяти, для этого по шине адреса передаются их адреса, а по шине управления — сигнал на считывание. Считанные данные передаются в процессор по шине данных.

Декодированная команда и данные передаются в АЛУ (арифметико-логическое устройство), где отдельно обрабатываются целочисленные данные, и отдельно — данные в форме чисел с плавающей запятой.

Результаты обработки передаются по шине данных в оперативную память, одновременно по шине адреса передаются адреса ячеек памяти, куда данные необходимо записать, а по шине управления передается сигнал на запись.

Быстродействие процессора существенно больше быстродействия оперативной памяти, поэтому процессор часть времени простаивает в ожидании данных. Чтобы этого не происходило, в современные процессоры встроена более быстрая, чем оперативная, кэш-память.

Кэш-память разделена на два уровня. В кэш-память 2-го уровня (большую по объему и менее быстродействующую) считывается из оперативной памяти очередная порция команд и данных. Кэш-память 1-го уровня (меньшая по объему, но более быстродействующая) разделена на две части, в одну часть считываются наиболее нужные процессору данные, а в другую часть — наиболее нужные процессору команды.

Команда памяти поступает в процессор по шине данных

Следующая страница Практическое задание «Определение объемов кэш-памяти процессора»

Видео:Как разогнать процессор и память? Гоним по шине и множителю.Скачать

Как разогнать процессор и память? Гоним по шине и множителю.

Как работает процессор?

Авторизуйтесь

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Как работает процессор?

Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.

Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.

Процессор — это сердце/мозг любого компьютера. Его основное назначение — арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.

Видео:Лекция 279. Прямой доступ к памятиСкачать

Лекция 279.  Прямой доступ к памяти

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент — арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением — устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

3–5 декабря, Онлайн, Беcплатно

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S — выходом, C — переносом (в старший разряд).

Схема арифметического полусумматора

Видео:КАК РАБОТАЕТ КЭШ ПРОЦЕССОРА | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

КАК РАБОТАЕТ КЭШ ПРОЦЕССОРА | ОСНОВЫ ПРОГРАММИРОВАНИЯ

Хранение информации — регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр — минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set — Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Читайте также: Киа оптима gt line размеры шин

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) — это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической — SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической — конденсаторы. SRAM быстрее, а DRAM дешевле.

Видео:Принцип работы процессора на уровне ядраСкачать

Принцип работы процессора на уровне ядра

Команды (инструкции)

Команды — это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:

  • Арифметические: сложение, вычитание, умножение и т. д.
  • Логические: И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
  • Информационные: move , input , outptut , load и store .
  • Команды перехода: goto , if . goto , call и return .
  • Команда останова: halt .

Прим. перев. На самом деле все арифметические операции в АЛУ могут быть созданы на основе всего двух: сложение и сдвиг. Однако чем больше базовых операций поддерживает АЛУ, тем оно быстрее.

Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.

В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.

Группу инструкций принято называть набором команд (англ. instruction set).

Видео:Частота процессора, множитель и системная шинаСкачать

Частота процессора, множитель и системная шина

Тактирование процессора

Быстродействие компьютера определяется тактовой частотой его процессора. Тактовая частота — количество тактов (соответственно и исполняемых команд) за секунду.

Частота нынешних процессоров измеряется в ГГц (Гигагерцы). 1 ГГц = 10⁹ Гц — миллиард операций в секунду.

Чтобы уменьшить время выполнения программы, нужно либо оптимизировать (уменьшить) её, либо увеличить тактовую частоту. У части процессоров есть возможность увеличить частоту (разогнать процессор), однако такие действия физически влияют на процессор и нередко вызывают перегрев и выход из строя.

Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, . Первые 4 бита — код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A — поместить данные 1000 (последние 4 бита команды) в регистр A .
  2. LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 ( 0010 ) в регистр B .
  3. ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A ). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
  4. STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .

Вот такие операции нужны, чтобы сложить два числа.

Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.

Команда памяти поступает в процессор по шине данных

У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.

Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).

Видео:04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]Скачать

04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]

Поток инструкций

Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.

Команда памяти поступает в процессор по шине данных

Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.

Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.

Видео:Лекция 325. Atmega 8: Адресуемая памятьСкачать

Лекция 325. Atmega 8: Адресуемая память

Шины микропроцессорной системы и циклы обмена

Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена информацией по шинам таких систем. Без этого невозможно разработать аппаратную часть системы, а без аппаратной части не будет работать никакое программное обеспечение .

Читайте также: Шина данных can pdf

За более чем 30 лет, прошедших с момента появления первых микропроцессоров, были выработаны определенные правила обмена, которым следуют и разработчики новых микропроцессорных систем. Правила эти не слишком сложны, но твердо знать и неукоснительно соблюдать их для успешной работы необходимо. Как показала практика, принципы организации обмена по шинам гораздо важнее, чем особенности конкретных микропроцессоров. Стандартные системные магистрали живут гораздо дольше, чем тот или иной процессор . Разработчики новых процессоров ориентируются на уже существующие стандарты магистрали. Более того, некоторые системы на основе совершенно разных процессоров используют одну и ту же системную магистраль . То есть магистраль оказывается самым главным системообразующим фактором в микропроцессорных системах.

Обмен информацией в микропроцессорных системах происходит в циклах обмена информацией. Под циклом обмена информацией понимается временной интервал , в течение которого происходит выполнение одной элементарной операции обмена по шине. Например, пересылка кода данных из процессора в память или же пересылка кода данных из устройства ввода/вывода в процессор . В пределах одного цикла также может передаваться и несколько кодов данных, даже целый массив данных, но это встречается реже.

Циклы обмена информацией делятся на два основных типа:

  • Цикл записи (вывода) , в котором процессор записывает (выводит) информацию ;
  • Цикл чтения (ввода) , в котором процессор читает (вводит) информацию.

В некоторых микропроцессорных системах существует также цикл «чтение-модификация- запись » или же «ввод-пауза- вывод «. В этих циклах процессор сначала читает информацию из памяти или устройства ввода/вывода, затем как-то преобразует ее и снова записывает по тому же адресу. Например, процессор может прочитать код из ячейки памяти, увеличить его на единицу и снова записать в эту же ячейку памяти. Наличие или отсутствие данного типа цикла связано с особенностями используемого процессора.

Особое место занимают циклы прямого доступа к памяти (если режим ПДП в системе предусмотрен) и циклы запроса и предоставления прерывания (если прерывания в системе есть). Когда в дальнейшем речь пойдет о таких циклах, это будет специально оговорено.

Во время каждого цикла устройства, участвующие в обмене информацией, передают друг другу информационные и управляющие сигналы в строго установленном порядке или, как еще говорят, в соответствии с принятым протоколом обмена информацией.

Длительность цикла обмена может быть постоянной или переменной, но она всегда включает в себя несколько периодов сигнала тактовой частоты системы. То есть даже в идеальном случае частота чтения информации процессором и частота записи информации оказываются в несколько раз меньше тактовой частоты системы.

Чтение кодов команд из памяти системы также производится с помощью циклов чтения. Поэтому в случае одношинной архитектуры на системной магистрали чередуются циклы чтения команд и циклы пересылки (чтения и записи) данных, но протоколы обмена остаются неизменными независимо от того, что передается — данные или команды. В случае двухшинной архитектуры циклы чтения команд и записи или чтения данных разделяются по разным шинам и могут выполняться одновременно.

2.1. Шины микропроцессорной системы

Прежде чем переходить к особенностям циклов обмена, остановимся подробнее на составе и назначении различных шин микропроцессорной системы.

Как уже упоминалось, в системную магистраль (системную шину) микропроцессорной системы входит три основные информационные шины: адреса , данных и управления .

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Обычно шина данных имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться 8 байт информации, а по 8-разрядной — только один байт . Разрядность шины данных определяет и разрядность всей магистрали. Например, когда говорят о 32-разрядной системной магистрали, подразумевается, что она имеет 32-разрядную шину данных .

Шина адреса — вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемых шиной адреса , определяется как 2 N , где N — количество разрядов. Например, 16-разрядная шина адреса обеспечивает 65 536 адресов. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор ) или двунаправленной (когда процессор может временно передавать управление магистралью другому устройству, например контроллеру ПДП ). Наиболее часто используются типы выходных каскадов с тремя состояниями или обычные ТТЛ (с двумя состояниями).

Читайте также: Низкое сопротивление качению шины что это

Как в шине данных , так и в шине адреса может использоваться положительная логика или отрицательная логика. При положительной логике высокий уровень напряжения соответствует логической единице на соответствующей линии связи, низкий — логическому нулю. При отрицательной логике — наоборот. В большинстве случаев уровни сигналов на шинах — ТТЛ.

Для снижения общего количества линий связи магистрали часто применяется мультиплексирование шин адреса и данных . То есть одни и те же линии связи используются в разные моменты времени для передачи как адреса, так и данных (в начале цикла — адрес, в конце цикла — данные). Для фиксации этих моментов (стробирования) служат специальные сигналы на шине управления . Понятно, что мультиплексированная шина адреса / данных обеспечивает меньшую скорость обмена, требует более длительного цикла обмена (рис. 2.1). По типу шины адреса и шины данных все магистрали также делятся на мультиплексированные и немультиплексированные.

В некоторых мультиплексированных магистралях после одного кода адреса передается несколько кодов данных ( массив данных). Это позволяет существенно повысить быстродействие магистрали. Иногда в магистралях применяется частичное мультиплексирование , то есть часть разрядов данных передается по немультиплексированным линиям, а другая часть — по мультиплексированным с адресом линиям.

Шина управления — это вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave ). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.

Сигналы шины управления могут передаваться как в положительной логике (реже), так и в отрицательной логике (чаще). Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий ), с открытым коллектором (для двунаправленных и мультиплексированных линий).

Самые главные управляющие сигналы — это стробы обмена, то есть сигналы, формируемые процессором и определяющие моменты времени, в которые производится пересылка данных по шине данных , обмен данными . Чаще всего в магистрали используются два различных строба обмена:

  • Строб записи (вывода), который определяет момент времени, когда устройство-исполнитель может принимать данные, выставленные процессором на шину данных ;
  • Строб чтения (ввода), который определяет момент времени, когда устройство-исполнитель должно выдать на шину данных код данных, который будет прочитан процессором.

При этом большое значение имеет то, как процессор заканчивает обмен в пределах цикла , в какой момент он снимает свой строб обмена. Возможны два пути решения (рис. 2.2):

  • При синхронном обмене процессор заканчивает обмен данными самостоятельно, через раз и навсегда установленный временной интервал выдержки (tвыд), то есть без учета интересов устройства-исполнителя;
  • При асинхронном обмене процессор заканчивает обмен только тогда, когда устройство-исполнитель подтверждает выполнение операции специальным сигналом (так называемый режим handshake — рукопожатие).

Достоинства синхронного обмена — более простой протокол обмена , меньшее количество управляющих сигналов. Недостатки — отсутствие гарантии, что исполнитель выполнил требуемую операцию, а также высокие требования к быстродействию исполнителя.

Достоинства асинхронного обмена — более надежная пересылка данных, возможность работы с самыми разными по быстродействию исполнителями. Недостаток — необходимость формирования сигнала подтверждения всеми исполнителями, то есть дополнительные аппаратурные затраты .

Какой тип обмена быстрее, синхронный или асинхронный ? Ответ на этот вопрос неоднозначен. С одной стороны, при асинхронном обмене требуется какое-то время на выработку, передачу дополнительного сигнала и на его обработку процессором. С другой стороны, при синхронном обмене приходится искусственно увеличивать длительность строба обмена для соответствия требованиям большего числа исполнителей, чтобы они успевали обмениваться информацией в темпе процессора. Поэтому иногда в магистрали предусматривают возможность как синхронного , так и асинхронного обмена , причем синхронный обмен является основным и довольно быстрым, а асинхронный применяется только для медленных исполнителей.

По используемому типу обмена магистрали микропроцессорных систем также делятся на синхронные и асинхронные.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    📸 Видео

    Системная шина процессораСкачать

    Системная шина процессора

    Частота процессора или частота системной шины?Скачать

    Частота процессора или частота системной шины?

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]Скачать

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]

    Лекция 277. Программный способ передачи данныхСкачать

    Лекция 277. Программный способ передачи данных

    Разгон кольцевой шины и кэша L3 процессораСкачать

    Разгон кольцевой шины и кэша L3 процессора

    Разгон на "постоянку" в современных процессорахСкачать

    Разгон на "постоянку" в современных процессорах

    Как работает процессор: частоты, шины и т.д.Скачать

    Как работает процессор: частоты, шины и т.д.

    КАК РАБОТАЕТ ПАМЯТЬ КОМПЬЮТЕРА | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

    КАК РАБОТАЕТ ПАМЯТЬ КОМПЬЮТЕРА | ОСНОВЫ ПРОГРАММИРОВАНИЯ

    РЕШЕНИЕ.системные прерывания, процессор 100, майнер вирус.Скачать

    РЕШЕНИЕ.системные прерывания, процессор 100, майнер вирус.

    АПС Л14. ШиныСкачать

    АПС Л14. Шины
Поделиться или сохранить к себе:
Технарь знаток