Внешние конструктивные формы асинхронных двигателей определяются способом крепления двигателя и формой защиты его от воздействий окружающей среды. Широко распространено нормальное исполнение двигателя на лапах (рис. 1, а). В этом случае вал двигателя должен быть расположен горизонтально. Широко применяют фланцевые двигатели (рис. 1, б) для горизонтальной и вертикальной установок.
Выпускают также встроенные асинхронные двигатели, не имеющие станины, подшипниковых щитов, вала. Элементы такого двигателя встраивают в корпусные детали станка, причем валом двигателя служит один из валов станка (часто шпиндель), а станиной — корпус узла станка, например шлифовальной бабки (рис. 2).
За рубежом получили распространение двигатели специальной конструктивной формы, в том числе двигатели, имеющие малые радиальные размеры и значительную длину, и дискообразные двигатели, в частности, со статором в виде цилиндра и наружным ротором в форме кольца. Применяют также двигатели, при включении которых ротор, имеющий форму конуса, смещается в осевом направлении, развивая значительную силу тяги.
Эту силу используют для освобождения механического тормоза, воздействующего на вал двигателя после отключения двигателя от сети. Кроме того, применяют многочисленные конструкции двигателей с пристроенными редукторами, коробками скоростей и механическими вариаторами, обеспечивающими бесступенчатое регулирование.
Рис. 1. Конструктивные формы асинхронных двигателей
Отрицательной стороной применения двигателей специальных конструктивных форм является трудность их замены в случае аварии. Вышедший из строя электродвигатель приходится не заменять, а ремонтировать, причем во время ремонта станок простаивает.
Для привода станков применяют двигатели с различными формами защиты от воздействий окружающей среды.
Защищенные электродвигатели имеют решетки, закрывающие вентиляционные отверстия подшипниковых щитов. Это предотвращает попадание внутрь двигателя посторонних предметов, а также исключает возможность прикосновения рабочего к вращающимся и токоведущим частям. Для защиты от капель жидкостей, падающих сверху, двигатели имеют вентиляционные отверстия, обращенные вниз или расположенные в вертикальных плоскостях.
Рис. 2. Встроенный двигатель шлифовального шпинделя
Однако при работе такого электродвигателя в цехе его вентилятор вместе с воздухом засасывает внутрь пыль, брызги охлаждающей жидкости или масла, а также мелкие стальные или чугунные частицы, которые, прилегая к изоляции обмотки и вибрируя под действием переменного магнитного поля, быстро изнашивают изоляцию.
Более надежную защиту от воздействий окружающей среды имеют закрытые электродвигатели, подшипниковые щиты которых не имеют вентиляционных отверстий. Такие двигатели при одинаковых размерах с защищенными, вследствие худшего охлаждения, обладают меньшей мощностью. При одинаковых мощностях и частотах вращения закрытый электродвигатель в 1,5—2 раза тяжелее защищенного и стоимость его соответственно выше.
Стремление сократить габаритные размеры и стоимость закрытых двигателей привело к созданию закрытых обдуваемых электродвигателей. Такой электродвигатель имеет наружный вентилятор, укрепленный на конце вала двигателя, противоположном приводному, и закрытый колпаком. Этот вентилятор обдувает корпус электродвигателя.
Двигатели с обдувом по сравнению с закрытыми двигателями имеют значительно меньшую массу и более низкую стоимость. Обдуваемые двигатели чаще всех других применяют для привода металлорежущих станков. Двигатели, имеющие другие формы защиты от воздействий окружающей среды, употребляют для привода станков относительно редко. В частности, закрытые электродвигатели иногда применяют для привода шлифовальных станков.
Электродвигатели рассчитаны на стандартные напряжения 127, 220 и 380 В. Один и тот же двигатель можно включать в сети с разными напряжениями, например, в сети с напряжениями 127 и 220 В, 220 и 380 В. При этом для меньшего и з двух напряжений обмотку статора электродвигателя соединяют в треугольник, для большего — в звезду. Ток в обмотках электродвигателя и напряжение на них будут при таком включении в обоих случаях одни и те же. Кроме того, выпускают электродвигатели на 500 В, их статоры постоянно соединены в звезду.
Асинхронные короткозамкнутые двигатели, применяемые во многих отраслях промышленности, выпускают с номинальными мощностями 0,6—100 кВт на синхронные частоты вращения 600, 750, 1000, 1500 и 3000 об/мин.
Сечение проводов обмотки электродвигателя зависит от величины силы тока, проходящего по ней. При большем токе обмотка двигателя будет иметь больший объем. Сечение магнитопровода пропорционально величине магнитного потока. Таким образом, размеры электродвигателя определяются расчетными значениями тока и магнитного потока или номинальным моментом электродвигателя. Номинальная мощность двигателя
где P н — номинальная мощность, кВт, Мн — номинальный момент, Н • м, n н — номинальная частота вращения, об/мин.
Номинальная мощность при одних и тех же размерах двигателя возрастает с увеличением его номинальной частоты вращения. Поэтому тихоходные электродвигатели имеют большие размеры, чем быстроходные той же мощности.
При шлифовании отверстий малого диаметра для получения соответствующих скоростей резания нужны весьма высокие частоты вращения шлифовальных шпинделей. Так, при шлифовании кругом диаметром 3 мм со скоростью всего лишь 30 м/с частота вращения шпинделя должна быть равна 200000 об/мин. При высоких частотах вращения шпинделя силу прижатия крута можно уменьшить. При этом засаливание круга и изгиб оправки уменьшаются, а чистота поверхности и точность обработки повышаются.
В связи с изложенным, в промышленности применяют многочисленные модели так называемых электрошпинделей с частотами вращения 12 000—144 000 об/мин и выше. Электрошпиндель (рис. 3, а) представляет собой шлифовальный шпиндель на подшипниках качения со встроенным короткозамкнутым двигателем повышенной частоты. Ротор двигателя помещен между двумя опорами на конце шпинделя, противоположном шлифовальному кругу.
Статор двигателя электрошпинделя собирают из листовой электротехнической стали. На нем размещают двухполюсную обмотку. Ротор двигателя при частотах вращения до 30000—50000 об/мин набирают также из листовой стали и снабжают обычной короткозамкнутой обмоткой. Диаметр ротора стремятся по возможности уменьшить.
Особое значение для работы электрошпинделей имеет выбор типа подшипников. Обычно применяют шарикоподшипники повышенной точности, которые работают с предварительным натягом, создаваемым посредством тарированных пружин. Такие подшипники применяют для частот вращения, не превышающих 100000 об/мин.
Значительное применение в промышленности получили аэростатические подшипники (рис. 3, б). Вал 1 электродвигателя повышенной частоты вращается в подшипниках 3 с воздушной смазкой. Осевая нагрузка воспринимается воздушной подушной между торцом вала и подпятником 12, к которому вал прижимается под давлением воздуха, подаваемого внутрь корпуса через отверстие 14 для охлаждения двигателя. Сжатый воздух проходит через фильтр и попадает через штуцер 10 в камеру 11. Отсюда по каналу 9 и круговой канавке 8 воздух проходит в канал 7 и камеру 6. Из нее воздух поступает в зазор подшипника. К левому подшипнику воздух подводится через трубки 5 и каналы 4 в корпусе двигателя.
Отработанный воздух отводится по каналам 13. Воздушная подушка в зазоре подпятника создается воздухом, проходящим из камеры 11 через подпятник из пористого углеграфита. Каждый подшипник имеет коническую латунную обойму. В нее запрессован вкладыш из углеграфита, поры которого заполнены бронзой. Перед пуском электрошпинделя подают воздух, и между шпинделем и вкладышами образуются воздушные подушки. Это устраняет трение и износ подшипников при пуске. Затем двигатель включают, частота вращения ротора 2 достигает номинальной за 5—10 с. При отключении двигателя ротор 2 вращается по инерции в течение 3—4 мин. Для уменьшения этого времени применяют электрическое торможение.
Читайте также: Матрас армед противопролежневый ячеистый с компрессором размер
Использование воздушных подушек резко уменьшает потери на трение в электрошпинделе, расход воздуха составляет 6—25 м3/ч.
Применяли также электрошпиндели на подшипниках с жидкостной смазкой. Для их работы требуется непрерывная циркуляция масла под высоким давлением, иначе нагрев подшипников становится недопустимым.
При производстве высокочастотных электродвигателей требуется точное изготовление отдельных деталей, динамическая балансировка ротора, точная сборка и обеспечение строгой равномерности зазора между статором и ротором. Частоту тока, питающего электродвигатель повышенной частоты, выбирают в зависимости от требуемой частоты вращения электродвигателя:
где n о — синхронная частота вращения электродвигателя, об/мин, f — частота тока, Гц, p — число пар полюсов, поскольку p = 1, то
При синхронных частотах вращения электрошпинделей 12000 и 120000 об/мин частота тока должна быть соответственно равна 200 и 2000 Гц.
Для питания двигателей повышенной частоты применяют специальные генераторы. На рис. 4 представлен синхронный индукционный генератор трехфазного тока. На статоре генератора имеются широкие и узкие пазы. Обмотка возбуждения, которая размещена в широких пазах статора, питается постоянным током. Магнитное поле проводников этой обмотки замыкается через зубцы статора и выступы ротора так, как это показано на рис. 4 штриховой линией.
При вращении ротора магнитное поле, перемещаясь вместе с выступами ротора, пересекает витки обмотки переменного тока, размещенной в узких пазах статора, и наводит в них переменную э. д. с. Частота этой э. д. с. зависит от частоты вращения и числа выступов ротора. Электродвижущие силы, наведенные тем же потоком в катушках обмотки возбуждения, взаимно компенсируются вследствие встречного включения катушек. Обмотки возбуждения питаются через выпрямитель, присоединенный к сети переменного тока. Статор и ротор имеют магнитопроводы из листовой электротехнической стали.
Рис. 4. Индукционный генератор повышенной частоты
Генераторы описанной конструкции изготовляют на номинальные мощности от 1 до 3 кВт и на частоты от 300 до 2400 Гц. Генераторы приводят во вращение от асинхронных двигателей с синхронной частотой вращения 3000 об/мин.
Индукционные генераторы повышенной частоты начинают заменять полупроводниковыми (тиристорными) преобразователями. При этом обычно обеспечивают возможность изменения частоты тока, а следовательно, возможность регулирования частоты вращения электродвигателя. Если при таком регулировании напряжение поддерживать неизменным, то осуществляется регулирование с постоянной мощностью. Если поддерживать отношение напряжения к частоте тока (а следовательно, магнитный поток двигателя) неизменным, то регулирование производится с постоянным на всех скоростях длительно допустимым моментом.
Преимуществами приводов с тиристорным преобразователем частоты и асинхронным короткозамкнутым двигателем являются высокий к. п. д. и упрощение эксплуатации. Недостатком является пока еще высокая стоимость. В станкостроении наиболее целесообразно использование такого привода для двигателей повышенной частоты. В нашей стране созданы опытные приводы такого рода.
В исполнительных приводах станков нередко используют двухфазные маломощные асинхронные двигатели. Статор такого двигателя имеет две обмотки: обмотку возбуждения 1 и обмотку управления 2 (рис. 5, а). Короткозамкнутый ротор 4 имеет большое активное сопротивление. Оси обмоток перпендикулярны друг другу.
Рис. 5. Схема двухфазного асинхронного двигателя и его характеристики
К обмоткам приложены напряжения Ul и U2. При включении конденсатора 3 в цепь обмотки 2 ток в ней опережает по фазе ток в обмотке 1. При этом образуется вращающееся эллиптическое магнитное поле и короткозамкнутый ротор 4 начинает вращаться. Если уменьшить напряжение U2, то ток в обмотке 2 также будет уменьшаться. Это вызовет изменение формы эллипса вращающегося магнитного поля, которое делается все более вытянутым (рис. 5, б).
Двигатель с эллиптическим полем можно рассматривать как два двигателя на одном валу, один из которых работает с пульсирующим полем Ф1 а другой с круговым полем Ф2. Двигатель с пульсирующим полем Ф1 можно рассматривать как два одинаковых асинхронных двигателя с круговым полем, включенных для вращения в противоположные стороны.
На рис. 5, в показаны механические характеристики 1 и 2 асинхронного двигателя с круговым вращающимся полем и значительным активным сопротивлением ротора при его вращении в разные стороны. Механическую характеристику 3 однофазного двигателя можно построить путем вычитания моментов М характеристик 1 и 2 при каждом значении n. При любом значении n момент однофазного двигателя с большим сопротивлением ротора является тормозным. Механическую характеристику двигателя с круговым полем представляет кривая 4.
Механическую характеристику 5 двухфазного двигателя можно построить путем вычитания моментов М характеристик 3 и 4 при любом значении п. Значение n0 представляет собой частоту вращения двухфазного асинхронного двигателя при идеальном холостом ходе. Регулируя ток питания обмотки 2 (рис. 5, а), можно изменять наклон характеристики 4 (рис. 5, в), а следовательно, и значение n0. Таким образом производится регулирование частоты вращения двухфазного асинхронного двигателя.
При работе с большими значениями скольжения потери в роторе становятся весьма значительными. По этой причине рассмотренное регулирование применяют только для вспомогательных приводов малой мощности. Для уменьшения времени разгона и торможения применяют двухфазные асинхронные двигатели с полым ротором. У такого двигателя ротором является тонкостенный алюминиевый полый цилиндр.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
- Трехфазный асинхронный двигатель
- Трехфазный асинхронный двигатель с короткозамкнутым ротором
- Конструкция асинхронного электродвигателя
- Принцип работы. Вращающееся магнитное поле
- Концепция вращающегося магнитного поля
- Действие вращающегося магнитного поля на замкнутый виток
- Короткозамкнутый ротор асинхронного двигателя
- Скольжение асинхронного двигателя. Скорость вращения ротора
- Звезда и треугольник
- Обозначение выводов статора трехфазного электродвигателя
- Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
- Управление асинхронным двигателем
- Прямое подключение к сети питания
- Нереверсивная схема
- Реверсивная схема
- Плавный пуск асинхронного электродвигателя
- Частотное управление асинхронным электродвигателем
- Трехфазный асинхронный двигатель с фазным ротором
- Конструкция АДФР
- Фазный ротор
- Статор АДФР
- Обозначение выводов вторичных обмоток трехфазного АДФР
- Пуск АДФР
- 💡 Видео
Видео:Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.Скачать
Трехфазный асинхронный двигатель
Видео:Устройство асинхронного электродвигателяСкачать
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Конструкция асинхронного электродвигателя
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Читайте также: Приспособление для штукатурки стен под давлением от компрессора своими руками
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Действие вращающегося магнитного поля на замкнутый виток
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2
Звезда и треугольник
Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).
Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль).
Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).
Звезда | Треугольник | Обозначение |
---|---|---|
Uл, Uф — линейное и фазовое напряжение, В, | ||
Iл, Iф — линейный и фазовый ток, А, | ||
S — полная мощность, Вт | ||
P — активная мощность, Вт |
Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:
Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.
Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.
Подключение электродвигателя по схеме звезда и треугольник
Обозначение выводов статора трехфазного электродвигателя
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | U1 | U2 |
вторая фаза | V1 | V2 |
третья фаза | W1 | W2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | U | |
вторая фаза | V | |
третья фаза | W | |
точка звезды (нулевая точка) | N | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | U | |
второй вывод | V | |
третий вывод | W |
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | C1 | C4 |
вторая фаза | C2 | C5 |
третья фаза | C3 | C6 |
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | C1 | |
вторая фаза | C2 | |
третья фаза | C3 | |
нулевая точка | 0 | |
Соединение треугольником (число выводов 3) | ||
первый вывод | C1 | |
второй вывод | C2 | |
третий вывод | C3 |
Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).
Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети
Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.
Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:
Читайте также: Ваз 2104 сальник кпп первичного вала
- ,где Cраб — емкость рабочего конденсатора, мкФ,
- Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
- U1 – напряжение однофазной сети, В.
Видео:Как работает асинхронный двигатель?Скачать
Управление асинхронным двигателем
- Способы подключения асинхронного электродвигателя к сети питания:
- прямое подключение к сети питания
- подключение от устройства плавного пуска
- подключение от преобразователя частоты
Варианты подключения асинхронного электродвигателя с помощью магнитного пускателя (слева), устройства плавного пуска (посеридине) и частотного преобразователя (справа). Схемы представлены в упрощенном виде.
FU1-FU9 — плавкие предохранители, KK1 — тепловое реле, KM1 — магнитный пускатель, L1-L3 — контакты для подключения к сети трехфазного переменного тока, M1-M3 — асинхронные электродвигатели, QF1-QF3 — автоматические выключатели, UZ1 — устройство плавного пуска, UZ2 — преобразователь частоты
Прямое подключение к сети питания
Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.
С помощью магнитных пускателей можно реализовать схему:
- нереверсивного пуска: пуск и остановка;
- реверсивного пуска: пуск, остановка и реверс.
Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.
Нереверсивная схема
Реверсивная схема
Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.
Плавный пуск асинхронного электродвигателя
В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.
Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.
Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.
Частотное управление асинхронным электродвигателем
Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.
- Использование частотного преобразователя позволяет:
- уменьшить энергопротребление электродвигателя;
- управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
- избежать перегрузок электродвигателя и тем самым увеличить его срок службы.
Функциональная схема частотно-регулируемого привода
- В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
- скалярное управление;
- векторное управление.
Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).
Скалярное управление асинхронным двигателем с датчиком скорости
Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.
Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.
Полеориентированное управления асинхронным электродвигателем по датчику положения ротора
Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.
- По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
- полеориентированное управление по датчику;
- полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Полеориентированное управления асинхронным электродвигателем без датчика положения ротора
Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.
Видео:Асинхронные двигателиСкачать
Трехфазный асинхронный двигатель с фазным ротором
До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.
Конструкция АДФР
Фазный ротор
Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.
Статор АДФР
Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.
Обозначение выводов вторичных обмоток трехфазного АДФР
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | K1 | K2 |
вторая фаза | L1 | L2 |
третья фаза | M1 | M2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | K | |
вторая фаза | L | |
третья фаза | M | |
точка звезды (нулевая точка) | Q | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | K | |
второй вывод | L | |
третий вывод | M |
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | Р1 | |
вторая фаза | Р2 | |
третья фаза | Р3 | |
нулевая точка | 0 | |
Соединение треугольником (число выводов 3) | ||
первый вывод | Р1 | |
второй вывод | Р2 | |
третий вывод | Р3 |
Пуск АДФР
Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.
Применяются проволочные и жидкостные реостаты.
Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.
Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].
Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.
При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
💡 Видео
Разбираемся в конструкции обмоток электрических моторов!Скачать
Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙСкачать
Сравнение трехфазных двигателей разных изготовителейСкачать
АСИНХРОННЫЙ двигатель, принцип работы и строение, простыми словами. (ТРЕХФАЗНЫЙ).Скачать
Синхронный и асинхронный двигатели. Отличия двигателейСкачать
Короткозамкнутый и фазный роторСкачать
Асинхронный двигатель, конструкцияСкачать
Трехфазные асинхронные двигателиСкачать
Трехфазные асинхронные двигатели, Электротехника, 1982Скачать
Конструкция асинхронного электродвигателяСкачать
Асинхронные двигателиСкачать
Электродвигатель. Устройство асинхронного электродвигателя.Скачать
Обрыв стержней ротора асинхронного двигателя.mp4Скачать
Демонстрация принципов работы асинхронного тягового двигателяСкачать
Как узнать число пар полюсов и частоту вращения асинхронного трёхфазного двигателя по статору.Скачать
⚙️Типы синхронных двигателей BLDC, PMSM, IPM, SPM Мотор-колесо на STM32G4Скачать