Контроллер шин для микропроцессоров

Системная шина процессора предназначена для обмена информацией микропроцессора с любыми внутренними устройствами микропроцессорной системы (контроллера или компьютера). В качестве обязательных устройств, которые входят в состав любой микропроцессорной системы, можно назвать ОЗУ, ПЗУ, таймер и порты ввода-вывода. Структурная схема простейшего микропроцессорного устройства приведена на рисунке 1.

В состав системной шины в зависимости от типа процессора входит одна или несколько шин адреса, одна или несколько шин данных и шина управления. Несколько шин данных и адреса применяется для увеличения производительности процессора и используется только в сигнальных процессорах. В универсальных процессорах и контроллерах обычно применяется одна шина адреса и одна шина данных.

В понятие шины вкладывают разное значение при рассмотрении различных вопросов. В простейшем случае под понятием шина подразумевают параллельно проложенные провода, по которым передаётся двоичная информация. При этом по каждому проводу передаётся отдельный двоичный разряд. Информация может передаваться в одном направлении, как, например, для шины адреса или шины управления, или в различных направлениях (для шины данных). По шине данных информация передаётся либо к процессору, либо от процессора в зависимости от операции записи или чтения, которую в данный момент осуществляет процессор.

В любом случае все сигналы, необходимые для работы системной шины формируются микросхемой процессора как это рассматривалось при изучении операционного блока. Иногда для увеличения скорости обработки информации функции управления системной шины берёт на себя отдельная микросхема (например контроллер прямого доступа к памяти или сопроцессор). Арбитраж доступа к системной шине при этом осуществляет контроллер системной шины (в простейшем случае достаточно сигнала занятости шины).

В некоторых случаях в понятие шина дополнительно включают требования по уровням напряжения, которыми представляются нули и единицы, передаваемые по её проводам. В состав требований могут быть включены длительности фронтов передаваемых сигналов, типы используемых разъёмов и их распайка, последовательность передаваемых сигналов и скорость их передачи.

Контроллер шин для микропроцессоров

Рисунок 1. Структурная схема подключения микропроцессорных устройств к системной шине

При подключении различных устройств к системной шине возникает вопрос — как различать эти устройства между собой? Единственный способ сделать это использовать индивидуальный адрес для каждого устройства, подключенного к системной шине микропроцессора. Так как адресация производится к каждой ячейке устройства индивидуально, то возникает понятие адресного пространства, занимаемого каждым устройством и адресного пространства микропроцессорного устройства в целом.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Адресное пространство микропроцессорного устройства.

Адресное пространство микропроцессорного устройства изображается графически прямоугольником, одна из сторон которого представляет разрядность адресуемой ячейки этого микропроцессора, а другая сторона — весь диапазон доступных адресов для этого же микропроцессора. Обычно в качестве минимально адресуемой ячейки памяти выбирается восьмиразрядная ячейка памяти (байт). Диапазон доступных адресов микропроцессора определяется разрядностью шины адреса системной шины. При этом минимальный номер ячейки памяти (адрес) будет равен 0, а максимальный определяется из формулы:

Для шестнадцатиразрядной шины это будет число 65535 (64K). Адресное пространство этой шины и распределение памяти микропроцессорной системы, изображённой на рисунке 1, приведено на рисунке 2, а распределение памяти микропроцессорной системы, изображённой на рисунке 1, приведено на рисунке 3.

Рисунок 2. Адресное пространство шестнадцатиразрядной шины адреса

Рисунок 3. Распределение памяти микропроцессора с шестнадцатиразрядной шиной адреса

Микропроцессоры после включения питания и выполнения процедуры сброса всегда начинают выполнение программы с определённого адреса, чаще всего нулевого. Однако есть и исключения. Например процессоры, на основе которых строятся универсальные компьютеры IBM PC или Macintosh стартуют не с нулевого адреса. Программа должна храниться в памяти, которая не стирается при выключении питания, то есть в ПЗУ.

Выберем для построения микропроцессорной системы микросхему ПЗУ объёмом 2 килобайта, как это показано на рисунке 1. При рассмотрении построения блока обработки сигналов мы договорились, что процессор после сброса начинает работу с нулевого адреса, поэтому разместим ПЗУ в адресном пространстве начиная с нулевого адреса. Для того, чтобы нулевая ячейка ПЗУ оказались расположенной по нулевому адресу адресного пространства микропроцессора, старшие разряды шины адреса должны быть равны 0.

Читайте также: Размер шин исузу 5 тонн

При построении схемы необходимо декодировать старшие пять разрядов адреса (определить, чтобы они были равны 0). Это выполняется при помощи дешифратора адреса, который в данном случае вырождается в пятивходовую схему «ИЛИ» Это связано с тем, что внутри ПЗУ уже есть одиннадцативходовый дешифратор адреса. При использовании дешифратора адреса, обращение к ячейкам памяти выше двух килобайт не приведёт к чтению ячеек ПЗУ, так как на входе выбора кристалла CS уровень напряжения останется высоким.

Теперь подключим микросхему ОЗУ. Для примера выберем микросхему объёмом 8 Кбайт. Для выбора любой из ячеек этой микросхемы достаточно тринадцатибитового адреса, поэтому необходимо дополнительно декодировать три оставшихся разряда адреса. Так как начальные ячейки памяти адресного пространства уже заняты ПЗУ, то использовать нельзя. Выберем следующую комбинацию цифр 001 и используем известные нам принципы построения схемы по произвольной таблице истинности. Дешифратор адреса выродится в данном случае в трёхвходовую схему «И-НЕ» с двумя инверторами на входе. Схема этого дешифратора приведена на рисунке 1. Приведённый дешифратор адреса обеспечивает нулевой уровень сигнала на входе CS только при комбинации старших бит 001. Обратите внимание, что так как объём ПЗУ меньше объёма ОЗУ, то между областью адресов ПЗУ и областью адресов ОЗУ образовалось пустое пространство неиспользуемых адресов памяти.

И, наконец, так как все микропроцессоры предназначены для обработки данных, поступающих извне, то в любой микропроцессорной системе должны присутствовать порты ввода-вывода. Порт ввода-вывода отображается в адресное пространство микропроцессорного устройства как одиночная ячейка памяти, поэтому порт ввода вывода можно разместить по любому свободному адресу. Проще всего построить дешифратор числа FFFFh. В этом случае дешифратор превращается в обычную 16-ти входовую схему «И-НЕ», поэтому и выберем эту ячейку памяти в адресном пространстве микропроцессора для размещения порта ввода-вывода.

Видео:MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

MCP2515, контроллер CAN шины с интерфейсом SPI

Способы расширения адресного пространства микропроцессора.

Известно, что размер адресного пространства определяется разрядностью счётчика команд микропроцессора. Достаточно часто при развитии микропроцессорной системы возможности адресного пространства исчерпываются. В таком случае приходится прибегать к методам расширения адресного пространства.

Для расширения адресного пространства можно воспользоваться параллельным портом. Внешние выводы параллельного порта при этом используются в качестве старших битов адресной шины. Такой метод расширения адресного пространства называется страничным методом адресации. Регистр данных параллельного порта при использовании его для расширения адресного пространства будет называться переключателем страниц. Схема использования параллельного порта в качестве переключателя страниц памяти приведена на рисунке 4.

Рисунок 4. Использование параллельного порта в качестве переключателя страниц памяти

В этой схеме параллельный порт используется в качестве простейшего контроллера памяти микропроцессорного устройства. При применении восьмиразрядного параллельного порта в микропроцессорной системе появились дополнительные восемь линий адреса. В результате адресное пространство микропроцессорной системы увеличилось до 16 Мегабайт. Структура нового адресного пространства приведена на рисунке 5, а принцип формирования нового адреса с использованием переключателя страниц приведён на рисунке 6.

Рисунок 5. Структура страничного адресного пространства

Рисунок 6. Формирование адреса с использованием переключателя страниц

Метод страничной адресации прост в реализации и при формировании адреса физической памяти не приводит к дополнительным временным задержкам, но при использовании многозадачного режима работы процессора для каждой активной задачи выделяется целая страница в системной памяти микропроцессора. При такой работе в системной памяти процессора остаётся много неиспользуемых областей. Решить возникшую проблему позволяет метод сегментной организации памяти.

Читайте также: Шины для форд фиеста 2015 года

При сегментном методе организации памяти для расширения адресного пространства используется базовый регистр, относительно которого производится адресация команд или данных в программе. Разрядность базового регистра обычно выбирают равной разрядности счётчика команд. В качестве базового регистра, как и при страничной организации памяти, можно использовать параллельный порт.

Для формирования физического адреса используется параллельный двоичный сумматор. На входы этого сумматора подаётся содержимое базового регистра и содержимое счётчика команд. Суммирование производится со смещением содержимого базового регистра влево на несколько бит относительно счётчика команд (рисунок 8). В результате максимальный размер сегмента определяется разрядностью программного счётчика, а максимальная неиспользуемая область памяти — смещением базового регистра относительно программного счётчика.

Адресное пространство при использовании сегментного метода адресации приведено на рисунке 7.

Рисунок 7. Пример адресного пространства с разделением на сегменты

Количество сегментов определяется количеством базовых регистров. Сегменты могут перекрываться в адресном пространстве, и тем самым может регулироваться размер памяти, который отводится под каждый конкретный сегмент памяти. В компьютерах семейства IBM PC имеются четыре базовых регистра, определяющих сегмент данных, сегмент программы, сегмент стека и дополнительный сегмент. Информацию в базовые регистры заносит операционная система при переключении задач.

Рисунок 8. Формирование адреса при сегментной адресации

Ещё одним распространённым способом увеличения адресного пространства является применение окон. При использовании окон производится расширение не всего адресного пространства, а только его части. Внутри адресного пространства выделяется некоторая область, которая называется окном. В это окно может отображаться часть другого адресного пространства.

При использовании окон может быть использован как страничный метод отображения адресного пространства, так и сегментный метод отображения адресного пространства в окно.

При использовании страничного метода отображения, конкретная страница другого адресного пространства, которая в данный момент отображается в окно памяти, определяется переключателем страниц, построенному по такому же принципу как это было рассмотрено на рисунке 4.

При использовании сегментного метода отображения, конкретная область адресного пространства, которая будет отображаться в окно, определяется содержимым базового регистра. Если разрядность адреса вспомогательного адресного пространства, отображаемого в окно основной памяти, совпадает с разрядностью базового регистра, то любая область вспомогательной памяти может быть отображена в основную память с точностью до байта.

Принцип построения оконной адресации при отображении страниц показан на рисунке 9.

Рисунок 9. Применение окна для расширения адресного пространства

Оконная адресация часто используется при развитии микропроцессорных семейств, когда размера областей памяти, отведённых для конкретных задач в младших моделях семейства, не хватает для старших моделей семейства, а при этом нужно поддерживать аппаратную совместимость с младшими моделями семейства. В качестве примера можно привести микросхемы I81c96 фирмы INTEL или TMS320c5410 фирмы Texas Instrument, где для расширения области регистров специальных функций используется оконная адресация.

Понравился материал? Поделись с друзьями!

Вместе со статьей «Системная шина микропроцессора» читают:

Видео:Sm контроллер шины что это, 1Скачать

Sm контроллер шины что это, 1

Роль внутренней шины в стандартном контроллере

Одним из наиболее важных узлов контроллера является внутренняя шина. Хотя без микропроцессорных устройств управления и обладали большими функциональными возможностями, но, однако, они имели очень существенный недостаток, а именно, у них отсутствовала шина. Причиной этого было то, что у таких устройств управления каждый модуль был уникален, то есть решал какую-то свою задачу в автоматизации. Соединения между такими модулями представляло собой сложное сплетение проводов.

Появление микропроцессоров позволило очень сильно упростить схему соединений между модулями и сделать её регулярной и однотипной. Причиной такого упрощения явилось разделение функций между функциональными модулями и ЦПУ. За функциональными модулями остались наиболее общие функции, что позволило существенно упростить их внутреннюю структуру и унифицировать их связь с ЦПУ. К общим функциям относятся приём и передача сигналов, а также их частичная обработка. К частичной обработке сигналов можно отнести усиление, сравнение, селекцию, фильтрацию, гальваническую развязку, преобразование аналоговых сигналов в цифровой код, преобразование цифрового кода в аналоговый сигнал и так далее. Функциональные модули стали более универсальными, и этой универсальности в значительной мере способствовала унификация входных и выходных сигналов, которые для всех типов контроллеров стали иметь одинаковые диапазоны изменения. Функции полной обработки сигналов и дополнительные функции, вытекающие из индивидуальных особенностей объектов управления и контроля, были возложены на ЦПУ и прикладное программное обеспечение. Значительному упрощению соединений между модулями УСО и ЦПУ также способствовало появление двунаправленных магистральных приёмопередатчиков, выходы которых имеют третье состояние. Благодаря таким приёмопередатчикам схему соединений между модулями УСО и ЦПУ удалось превратить в полноценную шину, соединяющую параллельно одноимённые входы и выходы модулей УСО и ЦПУ. Первоначальное схемное решение, основанное на параллельном соединении выходов модулей УСО по схеме «монтажное ИЛИ», снижало нагрузочную способность шины и несколько усложняло схемное построение входных каскадов модулей УСО.

Читайте также: Какие шины составляют магистральную основу компьютера

Внутренняя шина конструктивно может быть выполнена по-разному. Если контроллер имеет каркасное построение, то внутренняя шина может быть выполнена в виде соединительной печатной платы с разъёмными соединителями (розетками), в которые вставляются модули УСО и ЦПУ. При распределённой установке модулей контроллера в шкафу соединение между ними может производиться с помощью ленточного кабеля. Если контроллер выполнен в виде конструктивно законченных модулей, устанавливаемых на DIN-рейку, то шина в таком контроллере может быть реализована с помощью шинных соединителей.

Контроллеры первого поколения имели нестандартную внутреннюю шину. То есть каждый изготовитель выбирал свой тип разъёмного соединителя, и распределял по его контактам соединительные проводники различного назначения так, как ему было удобнее. И хотя размеры печатных плат модулей контроллера были стандартизованы (то есть их размеры выбирались из стандартного ряда), модули контроллеров различных изготовителей были несовместимы ни по типу соединителей, ни по привязке сигналов к контактам соединителей.

С увеличением мощности микропроцессоров изготовители контроллеров стали переходить на стандартную внутреннюю шину (контроллеры второго поколения). В качестве стандарта была выбрана укороченная шина ISA. Аббревиатура ISA это наименование стандарта, который определил тип соединителя, привязал сигналы к контактам этого соединителя, а также установил уровни передаваемых сигналов. Благодаря этому модули контроллеров разных производителей, выполненные в одном стандарте, стали взаимозаменяемыми.

Внутренняя шина контроллеров, разработанных на основе микропроцессора, функционально разбита на три части: 8-разрядная шина данных, разрядная шина адреса и шина управления. Однако шина данных осталась восьмиразрядной, хотя разрядность процессоров повысилась. Это объясняется тем, что основное время в контроллерах тратится на обработку данных, и здесь чем выше разрядность процессора, тем быстрее она осуществляется. ЦПУ опрашивает модули УСО по программно определённому циклу, длительность которого для большинства объектов управления в силу их инерционности задаётся равной одной — двум секундам. На опрос модулей тратится сравнительно мало времени (порядка нескольких миллисекунд). Переход на шестнадцати разрядную шину данных даёт выигрыш во времени несколько микросекунд, что не оправдывает затраты на аппаратные средства. Увеличение разрядности шины данных приводит к увеличению контактов на соединителях модулей, а в некоторых случаях требует дополнительного соединителя, что может привести к увеличению типоразмеров плат модулей контроллера и соединительной платы. Кроме того, увеличение разрядности шины данных приводит к увеличению количества элементов в модулях и повышает трудоёмкость изготовления изделия. Поэтому увеличение разрядности контроллеров на данном этапе развития микропроцессорной техники пока экономически нецелесообразно.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности


    🎦 Видео

    Системная шина процессораСкачать

    Системная шина процессора

    Чем отличается МИКРОКОНТРОЛЛЕР и МИКРОПРОЦЕССОРСкачать

    Чем отличается МИКРОКОНТРОЛЛЕР и МИКРОПРОЦЕССОР

    Как устранить проблему с sm контроллер шиныСкачать

    Как устранить проблему с sm контроллер шины

    Другие устройства в диспетчере устройств как убрать Windows 11.Неизвестное устройство.PCI-контроллерСкачать

    Другие устройства в диспетчере устройств как убрать Windows 11.Неизвестное устройство.PCI-контроллер

    Разгон кольцевой шины и кэша L3 процессораСкачать

    Разгон кольцевой шины и кэша L3 процессора

    Как прочитать прошивку из микроконтроллера. Краткий ликбез.Скачать

    Как прочитать прошивку из микроконтроллера. Краткий ликбез.

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

    Как разогнать процессор и память? Гоним по шине и множителю.Скачать

    Как разогнать процессор и память? Гоним по шине и множителю.

    2. Аппаратные особенности Regul R500Скачать

    2. Аппаратные особенности Regul R500

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

    Системные шины персонального компьютера для ...Скачать

    Системные шины персонального компьютера для ...

    Частота процессора, множитель и системная шинаСкачать

    Частота процессора, множитель и системная шина

    Принцип работы процессора на уровне ядраСкачать

    Принцип работы процессора на уровне ядра

    ЛОГИКА ПРОЦЕССОРА | Магия многопоточностиСкачать

    ЛОГИКА ПРОЦЕССОРА | Магия многопоточности

    Трансиверы CAN шины TJA1050, MCP2551 как альтернатива RS485Скачать

    Трансиверы CAN шины TJA1050, MCP2551 как альтернатива RS485

    Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

    Влияние шин PCI-e и внутренней шины видеокарты на производительность

    ✅ Диагностика шим контроллера на материнской платеСкачать

    ✅ Диагностика шим контроллера на материнской плате
Поделиться или сохранить к себе:
Технарь знаток