Видео:Давление в Шинах от R13 до R18Скачать
2.1. Качение автомобильного колеса
Основным преимуществом колеса как механизма является возможность экономии работы при перемещении груза за счет замены трения скольжения, возникающего на границе двух взаимно перемещаемых тел, значительно меньшим по величине трением качения. Действующие на колесо автомобиля силы и моменты вызывают со стороны дороги реактивные силы, которые в общем случае расположены в трех взаимно перпендикулярных направлениях и приложены к колесу в месте его контакта с основанием дороги. Эти реактивные силы получили название вертикальной G, тангенциальной X и боковой Y. Неподвижное колесо подвержено действию одной вертикальной силы G, приложенной к оси колеса (рис. 2.1). В этом случае действующая на ось колеса весовая нагрузка вызовет со стороны основания равную по величине реактивную силу Z. Вертикальная сила G, приложенная к оси колеса, и ее реакция Z со стороны дороги расположены в одной вертикальной плоскости, проходящей через ось колеса. Если приложить толкающую силу Р к автомобилю, он начнет перемещаться. Колесо начинает совершать вращательное движение относительно своего центра и поступательное перемещение относительно исходной точки дорожного основания. При этом сопротивления, возникающие при качении колеса, будут складываться из сопротивлений, препятствующих поступательному его перемещению.
Рис. 2.2. Силы, действующие на ведомое колесо
Качение колеса по опорной поверхности приводит к нарушению симметрии области контакта колеса и основания относительно вертикали, проходящей через центр колеса, и вызывает смещение реакции Z относительно этой вертикали вперед по ходу его движения на определенную величину а, называемую коэффициентом трения и измеряемую в единицах длины (рис. 2.2). Вертикальная реакция Z как и при неподвижном колесе, численно будет равна нагрузке.
Рис. 2.1. Действие сил на неподвижное жесткое колесо
В случае ведомого колеса толкающая сила Р от автомобиля через подшипник передается на ось колеса и вызывает со стороны основания тангенциальную реакцию X, которая будет приложена к поверхности колеса в зоне его контакта и будет иметь противоположное толкающей силе Р направление.
Описанный случай движения колеса характерен тем, что толкающая сила, действующая на его ось, обусловлена и всегда равна тем сопротивлениям, которые возникают при качении рассматриваемого колеса.
Работа ведущего колеса отличается тем, что к колесу прикладывается не толкающая сила, а крутящий момент (рис. 2.3, а). Этот момент Мк должен уравновесить суммарное сопротивление Рсопр всех противодействующих движению сил (ветра, уклона дороги, трения, инерционных). В результате в контакте колеса с дорогой возникает реакция Rх = Pсопр, направленная в сторону движения.
Кроме функции ведомого и ведущего, колесо может выполнять роль тормозящего. Работу тормозящего колеса можно сравнить с работой ведущего. Разница состоит в том, что крутящий момент, а следовательно, и тангенциальная реакция дороги имеют противоположное направление и определяются интенсивностью торможения (рис. 2.3,б). Коэффициент сцепления между колесом и основанием в большинстве случаев значительно меньше единицы и, следовательно, тангенциальная сила, как правило, значительно меньше вертикальной.
Рис. 2.3. Силы, действующие на ведущее (а) и тормозящее (б) колесо
Толкающая сила, приложенная к оси ведомого колеса, и тангенциальная реакция, действующая на колесо со стороны основания, создают крутящий момент, который при установившемся движении равен моменту тангенциальной (или вертикальной) реакции относительно центра колеса. Для ведущего колеса крутящий момент складывается из суммы этих моментов, а для тормозящего колеса равен их разности.
Рис. 2.4. Действие сил на колеса во время движения по неровному основанию
Кроме перечисленных силовых факторов, колесо часто подвергается воздействию боковых сил и моментов, расположенных в плоскости, перпендикулярной плоскости вращения колеса.
На плоском и ровном основании боковые силы являются следствием действия на шасси автомобиля опрокидывающих поперечных сил, например центробежной силы на повороте или составляющей веса, обусловленной наклоном дороги.
На выпуклом или вогнутом основании, а также при движении по дороге, имеющей неровности, колеса также могут испытывать действие боковых сил (рис. 2.4), которые при условии их равенства на левых и правых колесах по величине и противоположности по направлению будут гаситься на оси, не передаваясь на сам автомобиль. Действие на колесо боковой силы, так же как и тангенциальной, ограничено сцеплением колеса с дорогой. При движении автомобиля по выпуклому или вогнутому основанию или особенно по дороге с неровностями боковые силы могут достигать весьма значительной величины.
Таким образом, весь комплекс внешних нагрузок, действующих на колесо со стороны дороги, может быть представлен тремя взаимно перпендикулярными силовыми факторами:
вертикальной реакцией Z, величина которой обусловливается суммарным весом перевозимого груза и автомобиля. Эта нагрузка всегда действует на колесо независимо от того, движется оно или нет, работает в качестве ведомого, ведущего или тормозящего. Величина же этой нагрузки при движении может изменяться в зависимости от ускорения (замедления), продольного и поперечного профиля дороги, ее извилистости, неровностей дорожного полотна и скорости движения;
тангенциальной реакцией X, расположенной в плоскости колеса и являющейся следствием приложения к нему внешнего момента (крутящего или тормозного), толкающей силы, аэродинамического сопротивления, силы трения качения. Величина этой реакции достигает наибольшего значения обычно при торможении, однако, как правило, ограничена коэффициентом сцепления колеса с основанием дороги, который в большинстве случаев меньше единицы, а следовательно, даже наибольшее значение этой нагрузки, как правило, меньше вертикальной реакции;
Читайте также: Шины зимние goodyear в с петербурге
боковой реакцией Y, которая расположена в плоскости, перпендикулярной плоскости колеса. Подобно тангенциальной эта нагрузка также ограничена силой сцепления колеса с дорогой и, следовательно, ее максимальное значение не может быть больше вертикальной силы, за исключением случаев движения по неровной дороге, глубокой колее. В этих условиях боковая сила может значительно превосходить силу сцепления колеса с дорогой.
Рис. 2.5. Деформация шин при повороте автомобиля и соответствующее искажение пятна контакта шины с дорогой из-за увода колеса (вид А)
Особого интереса заслуживают качение наклоненного колеса и боковой увод шины. При движении автомобиля на повороте профиль эластичной шины деформируется в боковом направлении под действием центробежной силы, направленной перпендикулярно плоскости колеса (рис. 2.5). Вследствие боковой деформации шины колесо катится не в плоскости I-I, а под углом увода δ.
Способность шины к боковой деформации оказывает большое влияние на эксплуатационные свойства автомобиля, особенно на его устойчивость и управляемость. Поэтому параметры, определяющие увод колеса, являются важной характеристикой шины.
Увод колеса оценивается углом δ, который принято называть углом бокового увода. Приложенные к колесу силы вызывают боковую деформацию шины за счет изгиба протектора в боковом направлении. При качении колеса с уводом шина имеет сложную деформацию, которая несимметрична относительно ее вертикальной плоскости симметрии. При небольшой боковой силе и незначительных углах увода изменения боковой деформации в контакте подчиняются линейному закону.
Для каждой шины имеются определенная максимальная боковая сила и соответствующий ей определенный максимальный угол увода, при котором еще отсутствует большое проскальзывание элементов протектора в боковом направлении. Максимальный такой угол для большинства отечественных шин легковых автомобилей равен 3-5°.
Одним из часто встречающихся случаев качения колеса является случай движения его с наклоном к дороге. Действительно, на автомобиле колеса могут иметь наклон к дороге из-за их установки с разной нормальной деформацией шин, применения независимой подвески, наклона дороги и других факторов.
Наклон колеса к дороге оказывает существенное влияние на работу шины и траектории движения. При качении наклонного колеса в направлении плоскости вращения, со стороны дороги на него действуют так же, как и при уводе, боковая сила и момент. Последний стремится повернуть колесо в сторону его наклона.
Наклон колеса к дороге приводит к появлению боковой деформации шины, в результате которой центр давления контакта смещается в сторону наклона колеса. Возникают повышенные напряжения в плечевой зоне протектора шины. У наклонного колеса протектор шины изнашивается быстро и неравномерно, особенно в плечевой зоне со стороны наклона колеса. Таким образом, наклон колеса к дороге значительно уменьшает срок службы шины.
Наклон колеса к дороге изменяет угол увода. При движении автомобиля на повороте, когда при поперечном наклоне кузова колесо наклоняется в сторону боковой силы, увод колеса увеличивается. Такое явление наблюдается у передних управляемых колес легковых автомобилей, имеющих независимую подвеску. Уменьшение склонности шин к боковому уводу и уменьшение наклона колеса к дороге положительно сказываются на продлении срока службы шин. Уменьшения бокового увода можно достигнуть за счет увеличения ширины и понижения высоты профиля шины, увеличения угла наклона нитей корда по короне покрышки, повышения давления воздуха в шине, расширения обода.
Уменьшить наклон колес к дороге можно благодаря ряду конструктивных мер по установке колес, а также правильному подбору схемы и подвески. Целесообразно, чтобы подвеска при движении автомобиля на повороте создавала некоторый наклон колес к центру радиуса поворота автомобиля.
Влияние наклона колес в пределах практически встречающихся его величин на угол увода современных шин незначительно.
Видео:Индекс скорости и Индекс нагрузки - что это такое?Скачать
Критическая скорость качения шины причины возникновения
Видео:Слишком шумные шины: 8 основных причинСкачать
2.5. Потери энергии на качение шины
Пневматическая шина благодаря наличию в ней сжатого воздуха и упругих свойств резины способна поглощать огромное количество энергии в обратимой форме. Если шину, накаченную до определенного давления, нагрузить внешней силой, например вертикальной, а затем разгрузить, то можно заметить, что при разгружении не вся энергия возвратится: часть ее, расходуемая на внутримолекулярное и механическое трение в материалах шины и трение в контакте, составляет необратимые потери.
При качении колеса каждое сечение шины претерпевает периодическую нагрузку при выходе из контакта. Так как энергия, возвращающаяся при разгрузке шины, меньше энергии, затраченной на ее деформирование, то для поддержания равномерного качения колеса необходимо постоянно пополнять потери энергии извне, что и осуществляется приложением к оси колеса либо толкающей силы, либо крутящего момента.
Кроме сопротивлений, возникающих в результате потерь, связанных с деформацией шины, движущееся колесо испытывает сопротивление, обусловленное трением в подшипниках, а также сопротивление воздуха. Эти сопротивления хотя и незначительны, однако тоже принадлежат к категории необратимых потерь. Если колесо движется по мягкому опорному основанию, то, кроме потерь, перечисленных выше, будут и потери на пластическую деформацию грунта (механическое трение между отдельными его частицами).
Если движение колеса установившееся, то суммарная величина его сопротивлений будет численно равна приложенной к центру колеса толкающей силе Рк. Отношение же силы сопротивления к вертикальной нагрузке Gк, действующей на колесо, принято в теории автомобиля называть коэффициентом сопротивления качению. Таким образом, f = Pк/Gк.
Читайте также: Самый лучший шины для авто летние
Потери на качение оценивают также силой сопротивления качению или мощностью потерь на него. Сопротивление качению колеса зависит от многих факторов. В значительной степени влияние на него оказывают конструкция и материалы шины, скорость движения, внешние нагрузки и дорожные условия.
Многочисленные исследования показывают, что потери энергии на трение скольжения в контакте ведомого колеса при движении по твердой опорной поверхности невелики и составляют 5-10%, а аэродинамические потери не превышают 1,5-3% от общих потерь на качение.
Потери на сопротивление качению ведомого колеса при движении по дорогам с твердым покрытием состоят из потерь на разного вида трения в шине и составляют 90-95% общих потерь. На эти потери затрачивается значительная доля мощности двигателя.
Энергия, поглощаемая шиной, приводит к значительному повышению ее температуры. При этом уменьшается межмолекулярное трение в ней, а следовательно, и величина гистерезисных потерь, что является положительным явлением. Гистерезисные же потери в корде несколько возрастают.
Сопротивление качению в сильной степени зависит от скорости качения. В реальных условиях эксплуатации сопротивление качению может возрастать более чем в 2 раза [13, 23]. На рис. 2.13 показана зависимость силы сопротивления качению шины 6,45-13R модели М-130А с металлокордным брекером от скорости. Шина имела нормальную нагрузку 375 кгс и соответствующее ей давление воздуха 1,9 кг/см 2 . Испытания проводились на барабанном стенде при установившемся тепловом состоянии шины. На рисунке видны три явно выраженные нарастания сопротивления качению. При очень малых скоростях движения (в начале зоны I) потери мощности на качение пропорциональны циклу статического обжатия шины. Эти потери обусловлены сжатием резины в зоне контакта и сдвиговыми деформациями между кордом и резиновыми прослойками и колеблются в пределах 7-10% от общей энергии, затрачиваемой на обжатие шины.
Рис. 2.13. Зависимость силы сопротивления качению шины 6,45-13Р с металлокордным брекером от скорости
В зоне I для ряда шин наблюдается интенсивное возрастание сопротивления качению с увеличением скорости. Это происходит потому, что вначале при малом числе циклов нагружения пластические деформации в резине оказывают большое влияние на потери в шине. По мере увеличения числа циклов нагружения влияние пластической составляющей потерь в резине на сопротивление качению уменьшается.
В зоне II происходит нарастание потерь с увеличением скорости. С увеличением скорости все больше начинают сказываться инерционные силы. Начиная с определенного значения скорости, частота деформации элементов шины совпадает с их собственной частотой колебаний, что характеризует процессы качения в зоне III. При высоких скоростях качения скорость восстановления формы шины после прохождения контактной зоны ниже скорости выхода элементов из контакта. В результате из контакта выходят восстановленные элементы, которые под действием упругих и инерционных сил начинают колебаться. Эти колебания продолжаются до тех пор, пока внутреннее трение в материалах не преобразует энергию этих колебаний в тепло. Такая дополнительная затрата энергии приводит к резкому нарастанию потерь на качение. Вначале при скорости 80-90 км/ч появляются заметные на глаз поперечные колебания профиля шины, а затем уже при значительно больших скоростях движения и явно видимые колебания беговой дорожки шины в зоне выхода из контакта. Появление колебаний в окружном направлении соответствует критической скорости для данной шины. Чем выше скорость, при которой возникают видимые колебания в окружном направлении, тем лучше шина приспособлена для работы на высоких скоростях. Работоспособность шины при критической скорости исчисляется минутами, поэтому критическая скорость должна быть не менее чем на 10-20% выше максимальной скорости автомобиля, для которого она предназначена.
Критическая скорость повышается с уменьшением массы беговой дорожки и увеличением внутреннего давления воздуха, угла наклона нитей, динамического модуля упругости нити, т. е. при уменьшении массы беговой дорожки и возрастании факторов увеличения жесткости шины (рис. 2.14).
Большую критическую скорость имеют шины с менее массивной коронной частью. Длина волны у радиальных шин больше, чем у диагональных.
Опыты показывают, что колебания силы сопротивления качению значительно больше у шин грузовых автомобилей по сравнению с шинами легковых автомобилей и у разогретых пробегом по сравнению с холодными шинами. Ведомое колесо является лишь поддерживающим и направляющим элементом автомобиля. При равномерном движении вся подведенная к нему энергия затрачивается на сопротивление качению. Несмотря на различие функций, выполняемых ведущим, ведомым и тормозным колесами, потери на их качение целесообразно оценивать единообразно, т. е. коэффициентом сопротивления качению.
Конструкция шины оказывает большое влияние на количество поглощаемой ею энергии. На твердых гладких покрытиях дорог 6-слойные покрышки поглощают примерно на 5% больше энергии, чем 3-слойные. Шины, смонтированные на широких ободах, поглощают при своем качении примерно на 10% меньше энергии, чем шины, смонтированные на более узких. Сопротивление движения колеса возрастает с увеличением толщины протектора шины. Покрышка, смонтированная и вулканизированная с таким расчетом, чтобы протектор ее под влиянием давления воздуха в шине испытывал нормальное растяжение, обнаруживает меньшую тенденцию к волнообразным колебаниям на больших скоростях, поглощает меньше энергии на качение и имеет меньшее теплообразование.
Читайте также: Peugeot expert 2014 размер шин
Рис. 2.14. Зависимость критической скорости от внутреннего давления в шине (а), массы беговой дорожки (б), угла расположения нитей корда по короне (в), модуля упругости резины (г)
Для любой заданной толщины резины между слоями существует оптимальная, с точки зрения сопротивления качению, толщина резины между нитями корда. Отклонение от этой величины в ту или другую сторону приводит к повышению потерь на качение. Около 60% их связаны с гистерезисом резины. Поэтому снижение сопротивления качению в первую очередь зависит от улучшения ее рецептуры. Испытания шин с высоко- и низкогистерезисными резинами показали, что при низких и средних скоростях движения за счет повышения упругости можно уменьшить сопротивление качению на 40% по сравнению с шинами, изготовленными из обычных материалов. Уменьшение сопротивления качению за счет применения низкогистерезисных резин распределяется по элементам шины следующим образом: в протекторе 14%, в боковинах 12%, в каркасе 14%. При более высоких скоростях различие между высоко- и низкогистерезисными шинами уменьшается и даже по достижении некоторой скорости характер этих зависимостей становится противоположным. Следует иметь в виду, что если учитывать зависимость некоторых характеристик протектора и каркаса от размерности шины, то существует оптимальная, с точки зрения сопротивления качению, ее размерность. Увеличение давления воздуха приводит к снижению потерь на качение шины по твердому основанию во всем диапазоне изменения скорости. При увеличении давления уменьшается радиальная деформация и повышается ее жесткость, что уменьшает гистерезисные потери. Надо помнить, что в процессе качения по мере нагрева давление воздуха в шине повышается, а сопротивление качению уменьшается. Разогрев холодной шины до установившейся рабочей температуры приводит к снижению коэффициента сопротивления качению примерно на 20%. Зависимость сопротивления качению от давления воздуха является важной характеристикой шины. Рационально сконструированная шина должна иметь малое сопротивление качению.
Если различие в сопротивлении качению для холодных радиальных и диагональных шин довольно значительно, то при рабочем состоянии в разогретых шинах оно сводится к минимуму. Как правило, каждые 0,15 кгс/см 2 в диапазоне давления воздуха 1,7-2,2 кгс/см 2 приводят к изменению сопротивления качению на 5%. При собственной температуре минус 7°С шина может иметь в 3 раза большее сопротивление качению, чем при температуре плюс 93 °С.
Повышение нагрузки на колесо при постоянном давлении воздуха в шине увеличивает силу сопротивления качению. Однако при изменении нагрузки с 80 до 110% от номинальной коэффициент сопротивления качению практически остается постоянным.
Рост нагрузки на 20% сверх максимально допустимой повышает коэффициент сопротивления качению примерно на 4%. Зависимость коэффициента сопротивления качению от нагрузки может иметь разный характер и определяется индивидуальными особенностями конструкции шины, материала, из которого она изготовлена, и режима работы.
На сопротивление качению колеса некоторое влияние оказывает отношение ширины обода к ширине шины. Обычно существует оптимальное с точки зрения сопротивления качению отношение. Как уменьшение, так и увеличение этого соотношения от его оптимального значения повышает коэффициент сопротивления качению, причем в зоне меньших отношений в большей степени. Изменение отношения ширины обода к ширине профиля шины до 0,65 в сторону уменьшения и до 0,86 в сторону увеличения повышает это сопротивление примерно на 2% от его оптимального значения, соответствующего для современных диагональных и радиальных шин 0,72-0,76.
Сопротивление качению уменьшается по мере износа рисунка протектора. Существует линейная зависимость сопротивления качению от глубины рисунка. Наиболее сильно эта зависимость выражена для диагональных шин. У шины с полностью изношенным рисунком протектора сопротивление качению при скорости 130 км/ч меньше на 25% по сравнению с сопротивлением качению новой шины, а при скорости 190 км/ч — на 50%. В то же время для радиальных шин при скорости 130 км/ч сопротивление качению уменьшается только на 10%, а при скорости 190 км/ч увеличивается на 35%.
Сопротивление движению колеса несколько повышается с увеличением приложенного к колесу крутящего и тормозящего моментов. Однако интенсивность нарастания потерь при тормозном моменте меньше, чем при ведущем.
Опыты показали, что с увеличением крутящего момента коэффициент сопротивления качению интенсивно возрастает и что влияние на коэффициент сопротивления качению передаваемого колесом момента и воспринимаемой радиальной нагрузки тем больше, чем выше гистерезис шины.
Соотношение между коэффициентами сопротивления качению передних управляемых и задних ведущих колес может быть различным и зависит от внешних условий, упругих и гистерезисных характеристик шин.
Для различных типов дорожных покрытий коэффициент сопротивления качению колеблется в следующих пределах:
На дорогах с твердым покрытием сопротивление качению колеса во многом зависит от размеров и характера неровностей дороги. Сопротивление движению в таких условиях уменьшается с увеличением диаметра колеса.
При движении по мягкой грунтовой дороге сопротивление качению зависит от степени деформации шины и грунта. Опыты показывают, что деформация обычной шины на этих грунтах примерно на 30-50% меньше, чем на твердом покрытии. Для каждого размера шины и условий движения имеется определенное давление воздуха, обеспечивающее минимальное сопротивление движению.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
📹 Видео
ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать
Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
НИЗКОПРОФИЛЬНЫЕ ШИНЫ ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ АВТОМОБИЛИСТСкачать
Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
ВСЕ МАРКИРОВКИ ШИН. БЕЗ ИСКЛЮЧЕНИЙСкачать
Важность скольжения шинСкачать
ЧТО БУДЕТ ЕСЛИ ШИНУ ПОСТАВИТЬ ДРУГОЙ СТОРОНОЙСкачать
Неравномерный износ шин: причины и как его исправитьСкачать
Левые и правые шины. Асимметричные и направленные. Разница?Скачать
Всего за 2 минуты определить направление движения у колеса, если нет Никаких ОбозначенийСкачать
АвтоОрск / АвтоГаджеты / Почему нельзя ставить колеса больше заводских?Скачать
ОБ ЭТОМ МНОГИЕ ДАЖЕ НЕ ДОГАДЫВАЮТСЯСкачать
Не ставь БОЛЬШИЕ шины пока не узнаешь ЭТО !Скачать
Как определить ресурс пробега новой шины | Сколько ходят шины | Когда надо менять шиныСкачать
Виды износа протектора. ЧТО, КАК и ПОЧЕМУ?Скачать
Лучшие кофры Кофры для путешествий "Version 3.0" / кофры для путешествий своими руками.Скачать
ЖРАТЬ РЕЗИНУ БОЛЬШЕ НЕ БУДЕТ ЕСЛИ СДЕЛАТЬ ТАКСкачать