Kvs клапанов трехходовых смесительных клапанов

Авто помощник

Выражаясь так…: У некоторого клапана Kvs = 1,5 м3/час равносильно тому, как если бы Вы выразились, что у клапана пропускная способность равна 1,5 м3/час. В некоторых таблицах и паспортах любых гидравлических элементов(клапанов) могут указывать так:

Kvs клапанов трехходовых смесительных клапанов

Пропускная способность (Kvs) показывает значение гидравлического сопротивления. Отсюда и его определение.

Kvs – это форма выражения гидравлического сопротивления, которая характеризует пропускную способность. Значение пропускной способности присваивается практически всем элементам, которые участвуют в протекании в них жидкости или газа.

На стадии проектирования, проектанту обязательно необходимо знать пропускную способность любого гидравлического оборудования или клапана. От этого будет зависеть все необходимые расчеты для всей системы цепи, например системы отопления.

В чем измеряется пропускная способность?

Так договорились и присвоили единицу измерения: м3/час. (метр кубический в час). Это значение показывает расход. Например, расход клапана. Но это не просто расход, а расход, при котором на клапане возникает потеря напора равная 1 Bar.

Расход – это протекание определенного объема жидкости или газа в единицу времени. В данном случае расход м3/час. Означает, что будет протекать 1 кубометр жидкости или газа в 1 час времени. То есть за два часа пройдет 2 кубометра жидкости или газа. За половину часа пройдет 0,5 метров кубических = 500 литров.

Например, рассмотрим термостатический клапан Kvs которого равен 1,2 м3/час.

То есть, если мы через клапан пропустим 1,2 м3/час, то потеря составит 1 Bar.

Kvs клапанов трехходовых смесительных клапанов

Насос выдает расход ровно 1,2 м3/час

Манометр 1, показывает 1,4 Bar

Манометр 2, показывает 0,4 Bar

Тогда потеря напора будет равна: 1,4 — 0,4 = 1 Bar.

Конечно, это не означает, что расход в клапане должен быть таким всегда. В большинстве случаев расход очень маленький. И возникают другие задачи:

Как найти потерю напора при малых расходах?

Существует формула перерасчета

Kvs клапанов трехходовых смесительных клапанов

Q – фактический, другой расход, м3/час

Kvs – пропускная способность, м3/час при котором потеря напора 1 Bar.

Имеется термостатический клапана пропускной способностью 1,2 м3/час.

Найти потерю напора при расходе 0.18 м3/час.

Kvs клапанов трехходовых смесительных клапанов

Ответ: Потеря напора составляет 0,0225 Bar.

В некоторых случаях можно найти аббревиатуры типа Kv. Такой аббревиатурой могут обозначать дополнительные функции пропускных способностей.

Например, некоторые клапаны имеют различные регулировки.

Отдельную регулировку могут обозначить как: Kv

Kvs клапанов трехходовых смесительных клапанов

Обычно Kvs показывает значение пропускной способности полностью открытого клапана. А Kv для определенного изменения положения клапана.

К сожалению, эта аббревиатура иностранного происхождения и не известна ее история зарождения.

Предположительно: Kvs — kinematic viscosity или кинематическая вязкость.

Пропускная способность Kvs с точки зрения точной математики присваивается в основном тем элементам, у которых гидравлическое сопротивление образовано только местными сопротивлениями. Подробнее здесь.

Но на практике и в целом в мире это не так, потому что пропускную способность можно присвоить даже котловому оборудованию имеющее в себе участки различных труб. Поэтому перерасчет расходов может быть только приблизительным. Потому что с точки зрения гидравлических расчетов формулы разные для трубопровода и клапанов. Но в целом сопротивления примерно одинаково пропорциональны. Если нужны более точные гидравлические расчеты, то изучайте гидравлику.

Содержание
  1. Kvs клапанов трехходовых смесительных клапанов
  2. Kvs клапанов трехходовых смесительных клапанов
  3. Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru
  4. Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru
  5. 1. Типоразмер — условный диаметр — выбор типоразмера — примитивная оценка минимального диаметра трубопровода
  6. 2. Оценка необходимой прочности клапана. Условное давление — выбор прочностной характеристики.
  7. Таблицы зависимости максимального рабочего давления PN6, PN10, PN16, PN25, PN40, PN63, PN100. PN400 от температуры для трубопроводной арматуры из чугуна, углеродистой стали и нержавеющей стали. Влияние температуры на максимальное рабочее давление. Давление/Температура/Материал.
  8. 3. Применимость материалов конструкций и уплотнений на данной рабочей среде.
  9. 4. Кавитация как риск, оценка вероятности возникновения кавитации в клапане.
  10. 5. Уровень шума, риски возникновения шума без кавитации. Риски резонансов.
  11. 📹 Видео

Видео:Esbe трёхходовой для тёплого пола, зачем он нужен.Скачать

Esbe трёхходовой для тёплого пола, зачем он нужен.

Kvs клапанов трехходовых смесительных клапанов

ООО «ОВК-Автоматика»
(343) 278-45-90

Тепловая автоматика SIEMENS
Регулирующие арматура LDM
Современные инженерные системы

Главная > Публикации > Статьи> Подбор трехходового смесительного клапана

Подбор трехходового смесительного клапана

Коэффициент расхода в составляющих единицах расхода

Коэффициент расхода при номинальном сдвиге

Коэффициент расхода при минимальной норме расхода

Условный коэффициент расхода арматуры

Объемный расход в рабочем режиме (T 1 , p 1 )

Объемный расход в нормальном состоянии (0 о C, 0.101 MПа)

Абсолютное давление перед регулирующим вентилем

Абсолютное давление зарегулирующим вентилем

Абсолютное давление насыщенного пара при данной температуре (T)

Перепад давления на регулирующем вентиле (Δp = p 1 — p 2 )

Плотность рабочей среды в режиме эксплуатации (T 1 , p 1 )

Плотность газа в нормальном состоянии (0 C, 0.101 MПa)

Абсолютная температура перед вентилем (T 1 = 273 + t )

Вычисление коэффициента Kv

Основной расходной характеристикой регулирующей арматуры является у словный коэффициент расхода Kvs . Его величина обозначает характерный расход через данную арматуру в четко установленных условиях при 100%-ом открытии. Для выбора регулирующей арматуры с тем или иным значением Kvs необходимо произвести расчет коэффициента расхода Кv, который определяет объемный расход воды в м 3 /час , который протечет через регулирующий клапан в определенных условиях (потеря давления на нем в 1 бар, температура воды 15 о С, турбулентное течение, достаточное статическое давление, исключающее возникновение кавитации в указанных условиях).

Читайте также: Обратный клапан топлива уаз патриот

Ниже в таблице приведены формулы расчета Кv для различных сред

Преимуществом данного коэффициента является его простая физическая интерпретация и то, что в тех случаях, когда рабочей средой является вода, можно упрощенно рассчитать расход прямой пропорцией к корню квадратному перепада давления. Достигнув плотности 1000 кг/м 3 и задав перепад давления в барах, получим простую и самую известную формулу для расчета Кv:

На практике вычисление коэффициента расхода производится с учетом состояния регулирующей цепи и рабочих условий материала по приведенным выше формулам. Регулирующий клапан должен быть подобран так, чтобы он был способен регулировать максимальный расход в данных эксплуатационных условиях. При этом следует контролировать чтобы наименьший регулируемый расход также поддавался регулированию.

При условии, что регулирующее oтношение клапана: r > Kvs / Kv min

По причине возможного минусового допуска 10% значения Kv 100 относительно Kvs и требования касательно возможности регулирования в области максимального расхода (снижение и повышение расхода) рекомендуется выбирать значение Kvs регулирующего клапана, которое больше максимального рабочего значения Kv:

При этом необходимо принимать во внимание содержание “предохранительного припуска” в расчете предполагаемого значения Q max , который может стать причиной завышения производительности арматуры.

Упрощенный процесс расчета трехходового смесительного клапана

Исходные данные: среда — вода 90 о С, статическое давление в точке присоединения 600 кПа (6 бар),

Δp насос 02 = 35 кПа (0,35 бар), Δp трубопр = 10 кПа (0,1 бар), Δp теплообм = 20 кПа (0,2 бар),

номинальный расход Q ном = 5 м 3 /ч .

Типовая схема компоновки регулирующего контура с использованием трехходового смесительного клапана показана на рисунке приведенном ниже.

Δp насос 02 = Δp клапан + Δp теплообм + Δp трубопр

Δp клапан = Δp насос 02 — Δp теплообм — Δp трубопр = 35 — 20 — 10 = 5 кПа (0,05 бар)

K v = Q ном / √ Δp клапан = 5 / √ 0,05 = 22,4 м 3 /ч

Предохранительный припуск (при условии, что расход Q не был завышен):

Kvs = (1,1 ÷ 1,3) * Kv = (1,1 ÷ 1,3) * 22,4 = 24,6 ÷ 29,1 м 3 /ч

Из серийно производимого ряда Kv величин выберем ближайшую Kvs величину, т.е. Kvs = 25 м3/ч. Этой величине соответствует регулирующий клапан диаметром DN 40.

Определение гидравлических потерь на выбранном клапане при полном открытии и заданном расходе

Δp клапан Н100 = ( Q ном / Kvs ) 2 = (5 /25 ) 2 = 4 кПа (0,04 бар)

Предупреждение: У трехходовых клапанов самым главным условием корректного функционирования является соблюдение минимальной разности давлений на патрубках A и B. Трехходовые клапаны в состоянии справиться и со значительным дифференциальным давлением между патрубками A и B, но за счет деформации регулирующей характеристики, происходит ухудшение регулирующих способностей. Поэтому при малейшем сомнении относительно разности давлений между обоими патрубками (например, в случае, если трехходовой клапан прямо присоединен к магистральной сети), рекомендуем для качественного регулирования использовать двухходовой вентиль.

Определение авторитета выбранного клапана

Авторитет прямой ветви трехходового клапана в таком соединении, при условии постоянного расхода по контуру потребителя

а = Δp клапан Н100 / Δp клапан Н0 = 4 / 4 = 1

Обозначает, что зависимость расхода в прямой ветви клапана соответствует идеальной расходной кривой клапана. В данном случае Kvs обеих ветвей совпадают, обе характеристики линейные, значит, суммарный расход почти постоянный.

Комбинацию равнопроцентной характеристики на пути A, с линейной характеристикой на пути B, бывает иногда выгодно выбрать в случаях, когда невозможно избежать нагрузки вводов А относительно В дифференциальным давлением, или если параметры на первичной стороне слишком высокие.

Для быстрого и удобного расчета регулирующих клапанов на различные среды можно воспользоваться специальной расчетной программой, которые предлагают производители регулирующей арматуры. Например программа VENTILY от фирмы LDM. У нее есть версия как для РС, так и приложение для Android, что несомненно будет удобно владельцам смартфонов.( перейти на страницу загрузки программы Ventily)

Видео:Термостатический клапан kvsСкачать

Термостатический клапан kvs

Kvs клапанов трехходовых смесительных клапанов

Группа: New
Сообщений: 10
Регистрация: 24.5.2010
Пользователь №: 58249

Добрый день всем форумчанам.
Прошу не кидать в меня тапки и прочую утварь.
Не первый день читаю форумы на эту тему. Но так и не могу допереть.

Есть 2-х этажный коттедж, строю сам, многое своими руками.
Стены — газосиликат 375 мм. Холодный чердак. Магистральный газ.

В доме смонтирована и запущена система радиаторного отопления, работает 3-й год. Давление в системе чуть боле 1 атм.
На первом этаже разложены трубы ТП, опрессованы, залита стяжка.

Котел Buderus G124WS, атоматика Logomatic 2107 + модуль FM 241 (еще не установлен) (функциональный модуль с датчиком температуры подающей линии для регулирования одного дополнительного отопительного контура со смесителем)

Этот FM241 умеет по трем проводам управлять серводвигателем, который устанавливается на клапан.
По тех параметам управления я подобрал детали: 3-х ходовой смесит. клапан ESBE VRG 130 + привод ESBE ARA 661, 230v, 120сек, 6нМ, время выбега серводвигателя 2мин, артикул 12101300

В доме уложено 5 петель, их длины 68+82+93+79+46м. Труба Rehau-pink 16. Уложены улитками. Подключены через коллектор, подвод к которым выполнен медной трубой 20мм.

Куплен насос грундфос 25-60

От котлового коллектора отвод 1″

Между собой эти «блоки» еще не соединены.

Для построения смесительного блока мне не хватает знаний для рассчета KVS клапана
По каталогу клапанов вижу, что существуют клапаны с одинаковыми подсоединительными отверстиями (и резьбами), но с разными коэффициентами пропускной способности.

Читайте также: Замена клапана vvti мазда 3

Помогите определиться с клапаном, помогите его рассчитать.

Видео:Часть 7. Смесительный клапан тёплого пола Назначение схема расчет.Скачать

Часть 7. Смесительный клапан тёплого пола Назначение схема расчет.

Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru

Видео:Мини-обзор: термостатический смесительный клапан STOUTСкачать

Мини-обзор: термостатический смесительный клапан STOUT

Пошаговая методика-инструкция и правила подбора регулирующих клапанов по Kv (выбор Kvs). Методика подбора трубопроводной арматуры по расходным характеристикам от DPVA.ru

Далее в обязательном порядке выбираем — проверяем (подробные пояснения даны далее — ниже):

  1. условный диаметр DN = присоединительный размер клапана, (перейти)
  2. условное давление PN = прочностная характеристика клапана, (перейти)
  3. применимость материалов и уплотнений — температурная и химическая, (перейти)
  4. вероятность возникновения кавитации = вероятность локального падения давления внутри клапана ниже уровня давления кипения при данной температуре, (перейти)
  5. уровень шума — комфорт в эксплуатации; (перейти)
  6. диапазон регулирования + допустимые отношения входного давления к выходному или допустимый перепад давления на клапане. (перейти)

1. Типоразмер — условный диаметр — выбор типоразмера — примитивная оценка минимального диаметра трубопровода

Нет никакакого смысла выбирать регулирующую арматуру по типоразмеру (диаметру) трубопровода, хотя тип присоединения трубопроводной арматуры может быть важен на практике. При этом, выбор диаметра трубопровода до и после клапана является важной задачей корректной обвязки и комплектации системы, включающей регулинующий клапан. Очень часто условный диаметр DN клапана оказывается меньше условного диаметра трубопровода, на котором он установлен. На практике допустимо выбирать клапан с условным диаметром меньше условного диаметра трубопровода на 1-2 типоразмера, уделяя внимание рискам кавитации, шума и не забывая про прямые участки до и после регулятора.

2. Оценка необходимой прочности клапана. Условное давление — выбор прочностной характеристики.

Условное давление (номинальное давление) PN (устаревшее — Ру) является стандартизованным параметром трубопроводной арматуры, определяющим ее прочность. Существуют общепризнанные соответствия между материалом, рабочим давленим и рабочей температурой. Условное давление соответствует допустимому рабочему давлению при температуре 20 о С на воде. Очевидно, что с ростом температуры механические свойства любых конструкционных материалов обычно ухудшаются, поэтому чем выше рабочая температура, тем ниже максимальное рабочее давление при одном и том же значении условного давления.

Таблицы зависимости максимального рабочего давления PN6, PN10, PN16, PN25, PN40, PN63, PN100. PN400 от температуры для трубопроводной арматуры из чугуна, углеродистой стали и нержавеющей стали. Влияние температуры на максимальное рабочее давление. Давление/Температура/Материал.

Условное давление трубопроводной арматуры PN — наибольшее избыточное = приборное рабочее давление при температуре 20 °С, при котором обеспечивается заданный срок службы (ресурс) корпусных деталей арматуры. Максимальное рабочее давление — наибольшее избыточное давление, при котором возможна длительная эксплуатация арматуры при рабочей температуре (ГОСТ 24856). Влияние температуры на максимальное рабочее давление кранов, клапанов, задвижек и т.п. представлено в таблицах:

Таблица 1. Серый чугун, высокопрочный чугунвлияние температуры на максимальное рабочее давление трубопроводной арматуры

Читайте также: Как регулировать зазоры клапанов гранта

Таблица 2. Углеродистая стальвлияние температуры на максимальное рабочее давление трубопроводной арматуры

Таблица 3. Нержавеющая стальвлияние температуры на максимальное рабочее давление трубопроводной арматуры

3. Применимость материалов конструкций и уплотнений на данной рабочей среде.

Как известно, критерием истины является практика. В нашем случае — выбор материала определяет опыт (сын ошибок трубных). По ссылке ниже — наш скромный практический опыт, который предлагаем использовать и Вам. Помните, что лучше всего использовать те комбинации материалов, которые уже зарекомендовали себя на этом применении ранее, а не теоретические знания.

  • Справочно: Подробный обзор: Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость, а именно:
    • Таблица химической стойкости материалов. Применимость основных материалов общепромышленной и промышленной трубопроводной арматуры, насосов, датчиков, соленоидных клапанов и другого технологического оборудования в различных средах.
    • Таблица химической стойкости резин и эластомеров NBR, HNBR, CR, ACM, VMQ, FVMQ, FPM, FFPM, AU, EPDM, PTFE
    • Таблица применимости материалов на антидетонаторах, антидетонационных, октаноповышающих присадках к бензинам. Химическая стойкость пластмассовых (пластиковых) труб из полиэтиленов ПВД = LDPE = ПЭВД и ПНД = HDPE, полипропилена ПП = PP, ПВХ = поливинилхлорида =PVC Выписка из строительных норм СН 550-82
    • Таблица. Температурные пределы применимости пластмасс, полимеров и эластомеров
    • Таблица. Температурные пределы применимости неметаллических материалов Таблица . Применимость эластомеров в различных средах. Химическая стойкость.
    • Таблица. Химическая стойкость эпоксидных и полиэпоксидных смол.
    • Таблица. Химическая стойкость полиэфиров (полиэстеров).
    • Таблица. Химическая стойкость полиэтилена, труб из ПЭ (PE), фасонных деталей ПЭ.
    • Таблица. Химическая стойкость труб и соединительных деталей из меди. Коррозионная стойкость медных труб и фитингов.
    • Таблица. Химическая стойкость труб и соединительных деталей из полипропилена PP-R Таблица. Химическая стойкость поливинилхлорида, труб из ПВХ и НПВХ=непластифицированного (PVC,uPVC), фасонных деталей из ПВХ.
    • Таблица. Коррозионная стойкость металлов и сплавов при нормальных условиях
    • Таблица химической стойкости титана в жидкостях и газах. Коррозионные свойства титана
    • Таблица. Коррозионная стойкость обычных металлических материалов труб, арматуры, насосов, емкостей и т.д. (металлов и сплавов). Углеродистые стали, Чугун, AISI (ANSI, ASTM) 302, 304, 316 и 416 нержавеющие стали, Бронза, Monel, Hasteloy B, Hasteloy C.
    • Таблица. Химическая стойкость терморасширенного графита (ТРГ), изготовленного с использованием азотной кислоты
    • Таблица. Применимость нержавеющих сталей по AISI. Коррозионная стойкость сталей по AISI в различных применениях. Применимость (совместимость) материалов при использовании на озоне O3. Химическая стойкость на озоне. Применимость (совместимость) материалов при использовании на перекиси водорода H2O2. Химическая стойкость на перекиси водорода.
    • Таблица. Температурные пределы применимости и некоторые рекомендации для ASTM литых сталей и сплавов (в трубопроводной арматуре). Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов)
    • Прочее и т.д.

    4. Кавитация как риск, оценка вероятности возникновения кавитации в клапане.

    Кавитация, это явление образования пузырьков = каверн =пустот в жидких средах, с последующим их схлопыванием и высвобождением большого количества энергии и ударных волн, которые сопровождаются шумом и гидравлическими ударами. Кавитационные ударные волны активно разрущают поверхности, образуя классические кавитационные зоны разрушения материала. Фактически, кавитация — это явление вскипания жидкости при локальном (местном) падении давления ниже давления вскипания при данной температуре и последующего схлопыания этих пузырьков. Кавитация сопровождается характерным шумом кавитации, который являет собой собой случайный набор звуковых импульсов от схлопывания отдельных пузырьков. Очень характерный и незабываемый звук.

    Суть проблемы в следующем — кроме полного (невосстановимого) падения давления на руггулирующем клапане, внутри клапана существуют зоны очень сложных неламинарных потоков они же зоны локального = местного (восстановимого) падения давления, см. рисунок слева. В этих зонах падение давления ниже давления вскипания рабочей среды при данной температуре = давления насщенных паров при данной температуре — вполне реально. Что немедленно и запускает процесс кавитации.

    Чем выше полное падение = полный перепад давления на клапане, тем выше этот риск. Естественно, эффект довольно часто проявляется при использовании регуляторов давления, снижающих и поддерживающих давление в системе «после себя» = редукционных клапанов, или при нахождении рабочей точки клапана вблизи начала его регулировочной кривой («в нуле»).

    Для оценки=проверки риска появлении кавитации при больших перепадах давления на клапане применяется следующая формула

    Что означает, что полное падение давления на клапане уж точно не должно превышать 60% от входного!

    • Справочно: Подробный обзор: Давление насыщенных паров, давление вскипания, давление кавитации
    • Справочно: отношение входного давления к выходному или допустимый перепад давления на клапане.

    5. Уровень шума, риски возникновения шума без кавитации. Риски резонансов.

    Шум работающего клапана вызывает резкое ухудшение условий труда и жизни рядом с регулятором. Может передаваться по трубам и рабочей среде на огромное расстояние. Шум это результат обусловленных гидравликой или газодинамикой в клапане колебательных процессов деталей и корпусов регуляторов. При совпадении основной частоты колебаний с собственной частотой колебаний клапана амплитуда колебаний резко возрасти, что приведед к преждевременному усталостному разрушению материалов клапана и/или системы в целом.

    Считается, что за риск вознкновения повышенного шума в основном отвечает скорость рабочей среды в трубопроводе. Примерная фактическая усредненная скорость среды может быть оценена как:

    Таблица: ориентировочные рекомендуемые максимальные скорости различных рабочих сред для снижения риска появления критического шума

    📹 Видео

    Трехходовые смесительные клапаны STOUTСкачать

    Трехходовые смесительные клапаны STOUT

    Коротко о том какие бывают трехходовые клапана, и их применение.Скачать

    Коротко о том какие бывают трехходовые клапана, и их применение.

    Как подобрать трехходовой для теплых полов, отопления и водоснабжения за 2 минуты! Программа ESBEСкачать

    Как подобрать трехходовой для теплых полов, отопления и водоснабжения за 2 минуты! Программа ESBE

    Трёхходовые клапаны VALTECСкачать

    Трёхходовые клапаны VALTEC

    Трехходовой смесительный клапан как перенаправить потокиСкачать

    Трехходовой смесительный клапан как перенаправить потоки

    Подключение теплого пола к системе отопления. Трёхходовой смесительный клапан.Скачать

    Подключение теплого пола к системе отопления. Трёхходовой смесительный клапан.

    Трехходовой смесительный и разделительный клапан котла | Зачем он нужен и как работает?Скачать

    Трехходовой смесительный и разделительный клапан котла | Зачем он нужен и как работает?

    Трехходовой клапан. Устанавливаем правильно.Скачать

    Трехходовой клапан. Устанавливаем правильно.

    Особенности насосно-смесительных узлов, варианты монтажа, комплектующие.Скачать

    Особенности насосно-смесительных узлов, варианты монтажа, комплектующие.

    Термостатические смесительные клапаны ESBE VTA 322 и 372. Обзор и рекомендацииСкачать

    Термостатические смесительные клапаны ESBE VTA 322 и 372. Обзор и рекомендации

    Трехходовой клапан. Ошибки монтажаСкачать

    Трехходовой клапан. Ошибки монтажа

    Учимся подбирать насос и трехходовой для теплого пола! Теплые полы от А до Я - часть 3Скачать

    Учимся подбирать насос и трехходовой для теплого пола! Теплые полы от А до Я - часть 3

    Трехходовой смесительный клапан. Почему кипит котел?Скачать

    Трехходовой смесительный клапан. Почему кипит котел?

    hotland.com.ua - Как работает трехходовой клапан для твердотопливного котлаСкачать

    hotland.com.ua - Как работает трехходовой клапан для твердотопливного котла

    Трех ходовой клапан HERZ. Как правильно поставить на теплый пол?Скачать

    Трех ходовой клапан HERZ. Как правильно поставить на теплый пол?

    ТЕРМОСТАТИЧЕСКИЙ СМЕСИТЕЛЬНЫЙ КЛАПАН TIM BL3110C04Скачать

    ТЕРМОСТАТИЧЕСКИЙ СМЕСИТЕЛЬНЫЙ КЛАПАН  TIM BL3110C04
Поделиться или сохранить к себе:
Технарь знаток