Направление токов в шинах

16-6. Проверка токовых цепей реле направленного действия

В отличие от рассмотренного выше случая проверки токовых цепей дифференциальных защит, когда нас интересовало только взаимное расположение двух или нескольких токов, при проверке токовых цепей реле направленного действия (реле направления мощности, направленного реле сопротивления) необходимо знать взаимное расположение токов и напряжений, подводимых к обмоткам проверяемого реле.

Это условие определяет следующие особенности снятия векторных диаграмм при проверке правильности включения реле направленного действия:

диаграмму токов необходимо снимать на те же напряжения, которые подведены к проверяемой защите;

Направление токов в шинах

перед снятием диаграммы необходимо убедиться, что напряжения симметричны и имеют определенное чередование фаз (ABC);

необходимо знать направление мощности в первичной цепи, где установлено проверяемое реле.

Направление мощности от шин в линию принято считать положительным, а с линии на шины отрицательным (см. гл. 1). Положение векторов токов при разных направлениях активной и реактивной мощности показано на рис. 16-12.

Направление токов в шинах

На рис. 16-13 построена диаграмма, на которой показаны положения вектора тока фазы А при разных знаках мощности. Диаграмма разделена осями координат (Р — активная мощность, с которой совпадает вектор фазного напряжения, и Q — реактивная мощность) на четыре участка — так называемые квадранты, имеющие нумерацию I—IV. Например, если активная и реактивная мощности направлены от шин подстанции в линию, т. е. имеют положительный знак, говорят, что вектор тока расположен в I квадранте.

Направление мощности в первичной цепи, знание которого необходимо, чтобы построить вектор первичного тока, определяется на основании показаний щитовых приборов. Если точное направление мощности в первичной сети не может быть определено при существующей схеме коммутации, необходимо создать режим одностороннего питания. При этом активная мощность, очевидно, всегда будет направлена от элекростанции к нагрузке. То же самое можно сказать о направлении реактивной мощности, если только на приемной подстанции нет синхронных электродвигателей, компенсаторов или других источников реактивной мощности. В случае наличия таких источников реактивная мощность может быть направлена от шин приемной подстанции. Следует также иметь в виду, что протяженные воздушные линии напряжением 220—500 кВ и кабельные линии, обладающие значительной емкостью на землю, сами являются источниками реактивной мощности, направленной к шинам подстанции. Это обстоятельство следует учитывать при построении и анализе векторных диаграмм.

Проверка правильности подключения токовых цепей реле направленного действия производится путем сопоставлений векторов вторичных токов, определенных при снятии векторной диаграммы, с векторами первичных токов, положение которых определяется по известному направлению мощности в первичной сети (фазометр включается, как показано на рис. 16-3, а и б).

Направление токов в шинах

Если вектор вторичного тока совпадает с вектором первичного тока, как показано на рис. 16-14, а, значит, трансформаторы тока соединены в соответствии с рис. 16-14,б, или, как говорят, с «прямой полярностью». Обратная картина имеет место, если трансформаторы тока соединены с «обратной полярностью», как показано на рис. 16-14, г. Соответствующая векторная диаграмма токов изображена на рис. 16-14, в.

Векторные диаграммы, приведенные на рис. 16-14, соответствуют схеме соединения трансформаторов напряжения Y / Y-12, при которой векторы первичных и вторичных напряжений совпадают по фазе.

Если при проверке выяснится, что токовые цепи собраны неправильно, то следует выявить ошибку и исправить ее.

Читайте также: Давление шины паз 3205

После окончания замеров токов в фазах и снятия векторной диаграммы необходимо замерить ток в нулевом проводе защиты.

Видео:Урок 3. Действительное Направление электрического токаСкачать

Урок 3. Действительное Направление электрического тока

Направленная токовая защита

Необходимость применения направленных токовых защит возникает в сетях с двухсторонним питанием линий. Применение простых токовых защит в этом случае не может обеспечить правильной работы устройств РЗА, так как токи КЗ (короткого замыкания) могут иметь различное направление относительно шин подстанций.

Направление токов в шинах

Обратимся к рисунку: при повреждении в точке К1 ток КЗ будет протекать с шин ПС/2 и ПС/3 в точку замыкания.

При этом, защиты 4 и 5 должны своевременно отключить Л-2. Однако на шинах этих же подстанций расположены защиты 3 и 6, которые не должны действовать, так как это приведет к излишнему отключению Л1 и Л3.

Избирательную работу защит в этом случае обеспечивает орган направления мощности, который сравнивает фазу напряжения и тока КЗ Направление тока от шин в линию считается условно положительным, в этом случае реле мощности разрешает отключать контролируемый участок.

Направление из линии в шины считается условно отрицательным, происходит пуск защит, но команда не реализуется, поскольку реле мощности не работает на отключение.

Так как направленная защита должна реагировать не только на величину, но и на направление тока КЗ, применяют реле мощности включаемое по приведенной ниже схеме.

Токовое реле Т (типа РТ) реагирует на возрастание тока в сети. Реле мощности М является органом контролирующим направление мощности при КЗ в сети. Момент срабатывания реле мощности напрямую зависит от мощности Sp, подведенной к зажимам реле:

Направление токов в шинах

где Up – вторичный сигнал ТН, пропорциональный величине первичного напряжения сети в момент КЗ. Отражает не только величину, но и фазу напряжения; Ip – вторичный сигнал ТТ, пропорционален току и фазе тока КЗ. α — угол внутреннего сдвига реле. Зависит от схемы подключения реле на фазные токи и напряжения контролируемой сети; φp – сдвиг фаз между током и напряжением на зажимах реле.

При коротком замыкании на защищаемой линии токовое реле и реле направления мощности замыкают свои контакты, подают сигнал на реле времени. Через заданную выдержку времени, если контакты Т или М не вернулись в исходное состояние, защита подает импульс на катушку отключения выключателя.

При КЗ в точке К1 реле мощности направленной защиты 3 (см. рис.) не замкнет свои контакты, и защита не отработает.

В нормальном режиме работы сети, когда мощность течет от шин в линию, реле мощности может замыкать свои контакты. В этом случае не работает токовое реле, ток срабатывания которого отстраивается от максимальных рабочих токов.

Если по условиям селективности не удается отстроиться от рабочих токов, в схему включается реле минимального напряжения.

Из выражения (1) следует, что срабатывание реле мощности напрямую зависит от напряжения в момент КЗ Up и сдвига фаз (α–φp). При КЗ вблизи шин падение напряжения может быть таким, что величины Up не хватит для срабатывания реле.

Поэтому, при проектировании направленных защит определяют схему подключения реле мощности, при которой напряжение и разность фаз были бы максимальными для любого вида повреждения.

Наиболее распространенной является “90-градусная” схема включения. При такой схеме на каждый элемент реле мощности подаются следующие сочетания токов и напряжений: 1э–Ia и Ubc, 2э–Ib и Uca, 3э–Ic и Uab.

Читайте также: Виды заплаток для шины

Направление токов в шинах

На рисунке приведена векторная диаграмма токов и напряжений на зажимах реле, и линии моментов, реле направления мощности для Ia+Ubc:

Вектор тока Ia может совпадать с вектором напряжения Ubc при чисто реактивном сопротивлении линии, тогда ток принимает значение I’a (см. рис).

При чисто активном сопротивлении линии вектор тока Ia отстает от вектора напряжения на 90° (на рис. I’’a). Угол сдвига между Ubc и Ia равен φр=–(90-φк)°, а его предельные значения колеблются в зависимости от φк от 0° до 90°.

Прямая N1N2 — это линия изменения знака момента реле, а М1М2 линия максимального момента реле. Изменение величины φр в пределах от 0 до 90 ведет к срабатыванию реле, так как момент находится в области положительных значений (синее поле).

При отклонении φр за пределы 0 и 90, момент меняет свое значение на отрицательное и срабатывания не происходит.

Выбор уставок направленной защиты аналогичен выбору уставок для МТЗ и ТО. Таким образом, первое условие – это величина тока срабатывания Iсз должна быть отстроена от токов самозапуска двигателей в первый момент после отключения поврежденного участка:

Расчет коэффициентов и допущения в данном выражении полностью совпадают с расчетом Iсз для максимальных токовых защит.

Второе условие – это расчет токов в неповрежденных фазах при замыкании на землю. Дело в том, что токовые защиты не должны действовать при однофазных замыканиях на землю, для этого предусмотрены специальные защиты, реагирующие на токи нулевой последовательности.

При повреждении одной фазы в симметричной трехфазной сети, токи в неповрежденных фазах возрастают на некоторое расчетное значение. Это обусловлено тем, что ток замыкания на землю, притекает к нейтрали питающего трансформатора по земле, распределяется по трем фазам и возвращается к месту КЗ.

Иначе говоря, появляются токи подпитывающие место КЗ. В неповрежденных фазах ток нагрузки также увеличивается на расчетный коэффициент k, зависящий от места повреждения и количества заземленных нейтралей.

Таким образом, второе условие выглядит так:

где – коэффициент надежности 1,15–1,3; Iнф – ток в неповрежденной фазе. Расчетное значение.

В итоге, Icз принимается равным, большему из двух полученных значений.

Для обеспечения селективности, защит действующих в одном направлении, токи срабатывания должны нарастать при обходе защит против их направленности.

Направление токов в шинах

Время их срабатывания в разветвленных сетях выбирается по ступенчатому принципу для устройств, работающих в одном направлении, как показано на рисунке.

К основным недостаткам данных защит можно отнести:

1. Большие выдержки времени вблизи источников питания; 2. Сложность согласования защиты в сетях с большими нагрузками и небольшими по кратности токами КЗ; 3. Наличие мертвой зоны при трехфазных замыканиях; 4. Необходимость постоянного контроля цепей напряжения питающих реле мощности.

В основном, направленные защиты применяются в качестве основной в сетях до 35 кВ. В сетях 110–220 кВ применяется в качестве резервной, иногда в сочетании с токовой отсечкой применяется как основная защита.

Видео:Цветные метки на шинах, зачем они???Скачать

Цветные метки на шинах, зачем они???

16-6. Проверка токовых цепей реле направленного действия

В отличие от рассмотренного выше случая проверки токовых цепей дифференциальных защит, когда нас интересовало только взаимное расположение двух или нескольких токов, при проверке токовых цепей реле направленного действия (реле направления мощности, направленного реле сопротивления) необходимо знать взаимное расположение токов и напряжений, подводимых к обмоткам проверяемого реле.

Читайте также: Dunlop зимние шины с липучкой

Это условие определяет следующие особенности снятия векторных диаграмм при проверке правильности включения реле направленного действия:

диаграмму токов необходимо снимать на те же напряжения, которые подведены к проверяемой защите;

Направление токов в шинах

перед снятием диаграммы необходимо убедиться, что напряжения симметричны и имеют определенное чередование фаз (ABC);

необходимо знать направление мощности в первичной цепи, где установлено проверяемое реле.

Направление мощности от шин в линию принято считать положительным, а с линии на шины отрицательным (см. гл. 1). Положение векторов токов при разных направлениях активной и реактивной мощности показано на рис. 16-12.

Направление токов в шинах

На рис. 16-13 построена диаграмма, на которой показаны положения вектора тока фазы А при разных знаках мощности. Диаграмма разделена осями координат (Р — активная мощность, с которой совпадает вектор фазного напряжения, и Q — реактивная мощность) на четыре участка — так называемые квадранты, имеющие нумерацию I—IV. Например, если активная и реактивная мощности направлены от шин подстанции в линию, т. е. имеют положительный знак, говорят, что вектор тока расположен в I квадранте.

Направление мощности в первичной цепи, знание которого необходимо, чтобы построить вектор первичного тока, определяется на основании показаний щитовых приборов. Если точное направление мощности в первичной сети не может быть определено при существующей схеме коммутации, необходимо создать режим одностороннего питания. При этом активная мощность, очевидно, всегда будет направлена от элекростанции к нагрузке. То же самое можно сказать о направлении реактивной мощности, если только на приемной подстанции нет синхронных электродвигателей, компенсаторов или других источников реактивной мощности. В случае наличия таких источников реактивная мощность может быть направлена от шин приемной подстанции. Следует также иметь в виду, что протяженные воздушные линии напряжением 220—500 кВ и кабельные линии, обладающие значительной емкостью на землю, сами являются источниками реактивной мощности, направленной к шинам подстанции. Это обстоятельство следует учитывать при построении и анализе векторных диаграмм.

Проверка правильности подключения токовых цепей реле направленного действия производится путем сопоставлений векторов вторичных токов, определенных при снятии векторной диаграммы, с векторами первичных токов, положение которых определяется по известному направлению мощности в первичной сети (фазометр включается, как показано на рис. 16-3, а и б).

Направление токов в шинах

Если вектор вторичного тока совпадает с вектором первичного тока, как показано на рис. 16-14, а, значит, трансформаторы тока соединены в соответствии с рис. 16-14,б, или, как говорят, с «прямой полярностью». Обратная картина имеет место, если трансформаторы тока соединены с «обратной полярностью», как показано на рис. 16-14, г. Соответствующая векторная диаграмма токов изображена на рис. 16-14, в.

Векторные диаграммы, приведенные на рис. 16-14, соответствуют схеме соединения трансформаторов напряжения Y / Y-12, при которой векторы первичных и вторичных напряжений совпадают по фазе.

Если при проверке выяснится, что токовые цепи собраны неправильно, то следует выявить ошибку и исправить ее.

После окончания замеров токов в фазах и снятия векторной диаграммы необходимо замерить ток в нулевом проводе защиты.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    🎦 Видео

    Воздействие токов короткого замыкания на проводники и шины. ЭкспериментСкачать

    Воздействие токов короткого замыкания на проводники и шины. Эксперимент

    Кама пуля выбивает долги с мутного типаСкачать

    Кама пуля выбивает долги с мутного типа

    Как правильно установить и подключить трансформаторы токаСкачать

    Как правильно установить и подключить трансформаторы тока

    Отличие переменного и постоянного тока наглядно.Скачать

    Отличие переменного и постоянного тока наглядно.

    Ударный ток короткого замыканияСкачать

    Ударный ток короткого замыкания

    Как правильно устанавливать шины при шиномонтажеСкачать

    Как правильно устанавливать шины при шиномонтаже

    Всего за 2 минуты определить направление движения у колеса, если нет Никаких ОбозначенийСкачать

    Всего за 2 минуты определить направление движения у колеса, если нет Никаких Обозначений

    Реле направления мощности - Лаборатория РЗА (опыт 4 )Скачать

    Реле направления мощности - Лаборатория РЗА (опыт 4 )

    Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать

    Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбез

    Как ставить асимметричные #шины? #автоСкачать

    Как ставить асимметричные #шины? #авто

    Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать

    Что означает маркировка на шинах! Значение цифр и букв на резине.

    Асимметричные шины с ненаправленным рисунком. Как правильно установить автошиныСкачать

    Асимметричные шины с ненаправленным рисунком. Как правильно установить автошины

    Монтаж шин и направление рисунка протектораСкачать

    Монтаж шин и направление рисунка протектора

    Все про короткое замыканиеСкачать

    Все про короткое замыкание

    Как переменный ток "ходит" по проводнику? #Shorts #энерголикбезСкачать

    Как переменный ток "ходит" по проводнику? #Shorts #энерголикбез

    Читаем надписи на шине правильно. Подробный разборСкачать

    Читаем надписи на шине правильно. Подробный разбор

    Направленные летние шины – вымирающий вид: что случилось и кто виноватСкачать

    Направленные летние шины – вымирающий вид: что случилось и кто виноват

    ЧТО БУДЕТ ЕСЛИ ШИНУ ПОСТАВИТЬ ДРУГОЙ СТОРОНОЙСкачать

    ЧТО БУДЕТ ЕСЛИ ШИНУ ПОСТАВИТЬ ДРУГОЙ СТОРОНОЙ
Поделиться или сохранить к себе:
Технарь знаток