При большом количестве присоединений на повышенном напряжении возможно применение схем с одиночной секционированной системой шин (см. рис. 2.3). Эта схема обладает рядом существенных недостатков, в том числе необходимостью отключения линии или источников питания на все время ремонта выключателя в их цепи. При напряжении 35 кВ отключение линии будет непродолжительным, так как длительность ремонта выключателей невелика. В этот период используется резерв по сети, чтобы обеспечить питание потребителей. При напряжениях 110 кВ и выше длительность ремонта выключателей,
Рис. 2.3. Схемы с одной системой сборных шин несекционированых (а) и секционированных (б)
особенно воздушных, возрастает и становится недопустимым отключать цепь на все время ремонта, поэтому схема по рис. 2.3 применяется только для РУ 35 кВ.
Одним из важных требований к схемам на стороне высшего напряжения является создание условий для ревизий и опробований выключателей без перерыва работы. Этим требованиям отвечает схема с обходной системой шин (рис. 2.4). В нормальном режиме обходная система шин АО находится без напряжения, разъединители QSO, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме предусматривается обходной выключатель QO, который может быть присоединен к любой секции с помощью развилки из двух разъединителей. Секции в этом случае расположены параллельно друг другу. Выключатель QO может заменить любой другой выключатель, для чего надо произвести следующие операции: включить обходной выключатель QO для проверки исправности обходной системы шин, отключить Q0, включить QSO, включить QO, отключить выключатель Q1, отключить разъединители QSI и QS2.
Рис. 2.4. Схема с одной рабочий и обходной системами шин:
а – схема с совмещенным обходным и секционным выключателем и отделителями в цепях трансформатора; б – режим замены линейного выключателя обходным; в – схема с обходным и секционным выключателем.
После указанных операций линия получает питание через обходную систему шин и выключатель QO от первой секции (2.4, б). Все эти операции производятся без нарушения электроснабжения по линии, хотя они связаны с большим количеством переключений.
С целью экономии функции обходного и секционного выключателей могут быть совмещены. На схеме рис. 2.4, а кроме выключателя QO есть перемычка из двух разъединителей QS3 и QS4. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции В2 и также включен. Таким образом секции В1 и В2 соединены между собой через QO, QS3, QS4, и обходной выключатель выполняет функции секционного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки (QS5), а затем использовать QO по его назначению. На все время ремонта линейного выключателя параллельная работа секций, а следовательно, и линий нарушается. В цепях трансформаторов в рассматриваемой схеме установлены отделители (могут устанавливаться выключатели нагрузки QW). При повреждении в трансформаторе (например, Т1) отключаются выключатели линий W1, W3 и выключатель QO. После отключения отделителя QR1 выключатели включаются автоматически, восстанавливая работу линий. Такая схема требует четкой работы автоматики.
Схема по рис. 2.4, а рекомендуется для ВН подстанций (110 кВ) при числе присоединений (линий и трансформаторов) до шести включительно, когда нарушение параллельной работы линий допустимо и отсутствует перспектива дальнейшего развития. Если в перспективе ожидается расширение РУ, то в цепях трансформаторов устанавливаются выключатели. Схемы с трансформаторными выключателями могут применяться для напряжений 110 и 220 кВ на стороне ВН и СН подстанций [3].
При большем числе присоединений (7 — 15) рекомендуется схема с отдельными обходным QO и секционным QB выключателями. Это позволяет сохранить параллельную работу линий при ремонтах выключателей (рис. 2.4, в).
В обеих рассмотренных схемах ремонт секции связан с отключением всех линий, присоединенных к данной секции, и одного трансформатора, поэтому такие схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию [3].
На электростанциях возможно применение схемы с одной секционированной системой шин по рис. 2.4, в, но с отдельными обходными выключателями на каждую секцию.
г)Схема с двумя системами шин
Схемы РУ с двумя системами сборных шин являются естественным развитием схем с одной системой сборных шин. В схеме с двумя системами сборных шин и одним выключателем на цепь (рис. 2.5, а) нормально в работе находятся обе системы шин при включенном или отключенном (по режимным соображениям) шиносоединительном выключателе ШСВМ.
Каждое присоединение подключается (согласно принятой фиксации) к той или другой системе сборных шин, выполняющих в данном случае роль не только ремонтных, но и оперативных аппаратов, т. е. таких аппаратов, с помощью которых возможно переключение цепей с одной системы сборных шин на другую, при помощи разъединителей развилки. Эта операция выполняется при включенном ШСВМ[4].
При помощи ШСВМ можно отключить любое присоединение, если оно по каким-либо причинам не может быть отключено «своим» выключателем. Для этого включается ШСВМ и все присоединения, кроме отключаемого, переводятся на одну из систем сборных шин, а отключаемое остается на другой системе. Затем это присоединение вместе с системой сборных шин отключается ШСВМ.
Рис. 2.5. Распределительные устройства с двумя системами сборных шин:
а — с одним выключателем на цепь; б — оперативная схема при выводе в ремонт выключателя присоединения с установкой ремонтной перемычки; в — одна из систем сборных шин секционирована; 1 — развилка шинных разъединителей; 2 — ремонтная перемычка; 3 — выключатель присоединения отключен и выведен из схемы; 4 — присоединение секционного выключателя с реактором
Читайте также: Эксплуатация транспортного средства запрещена если шины
Шиносоединительный выключатель используется также при выводе в ремонт выключателей присоединений. Электрическая цепь, выключатель которой предполагается вывести в ремонт, отключается, выводимый в ремонт выключатель отсоединяется от шин, и далее цепь включается в работу через ШСВМ. При осуществлении этой операции отсоединенные от выключателя шины соединяются между собой специальными ремонтными перемычками из провода (рис. 2.5, б).
Схема предоставляет возможность поочередного вывода в ремонт систем сборных шин без прекращения работы электрических цепей. Для ремонта шинных разъединителей отключается лишь та цепь, разъединители которой выводятся в ремонт.
При повреждении на системе сборных шин автоматически отключаются присоединения только этой системы сборных шин. Для ввода присоединений в работу необходимо переключение их шинными разъединителями с поврежденной на оставшуюся в работе систему сборных шин. К потере присоединений электроустановки приводит также отказ в работе выключателя цепи во время к.з. на ней.
Существенным недостатком схемы является отключение всей электроустановки при следующих обстоятельствах:
коротком замыкании на рабочей системе сборных шин, когда другая система сборных шин выведена в ремонт;
создании ремонтных схем, связанных с ремонтом выключателей;
повреждении ШСВМ, а также не отключении его во время к. з. на одной из систем сборных шин, когда в работе находились обе системы сборных шин.
К недостаткам схемы относят увеличение в 2 раза числа шинных разъединителей и более сложное выполнение блокировки между выключателями и разъединителями, а также между рабочими и заземляющими разъединителями.
Использование шинных разъединителей в качестве оперативных аппаратов, несмотря на наличие блокировок, не исключает ошибочных действий персонала при переключениях. Часты, например, случаи включения (отключения) шинных разъединителей под током нагрузки, включения шинных разъединителей на не снятые заземления и т. д.
Надежность схем с двумя системами сборных шин и одним выключателем на цепь повышается при секционировании шин выключателем. Обычно секционируется одна рабочая система сборных шин, другая не секционируется и является резервной (рис. 2.5, в). В схеме имеются два шиносоединительных выключателя, соединяющих каждую секцию шин с резервной системой сборных шин. Это позволяет выводить в ремонт любую секцию шин путем перевода ее присоединений на резервную систему сборных шин. При необходимости возможно сохранение параллельной работы источников питания включением другого ШСВМ, который будет выполнять роль секционного выключателя.
Видео:Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать
Большая Энциклопедия Нефти и Газа
Видео:Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать
Обходная система — шина
Обходная система шин , к которой разъединителями / могут быть подсоединены ВЛ вводов, специальным силовым обходным выключателем 12 соединена с главной системой шин. Такое расположение разъединителей называют развилкой. Назначение обходной системы шин и обходного выключателя — замена любого ввода при работах на нем. Для этого включают разъединители 1 и 13 ( соответствующего ввода и обходного выключателя) со стороны обходной системы шин, а также разъединители 10 или / / — со стороны главной системы шин на нужную секцию. Затем включают обходной выключатель и отключают выключатель 4 соответствующего ввода. [1]
Обходная система шин используется для ревизии выключателей линий и транс ( юрматоров. [2]
Обходная система шин расположена внутри здания, что позволяет применять это ЗРУ в загрязненных зонах промышленных предприятий. Рассматриваемый вариант может быть применен для узловых подстанций ( УРП) промышленных предприятий в загрязненных зонах. Этот вариант отличается компактностью. [3]
Обходная система шин используется только при выводе в ремонт выключателя какого-либо присоединения. Однако в условиях нормальной схемы обходную систему шин также целесообразно ставить под напряжение. Не под напряжением находятся резервные силовые трансформаторы, а также оборудование с. [4]
Обходная система шин дает возможность вывести в ревизию или в ремонт рабочую систему шин и любой выключатель без перерыва питания. Ее можно присоединить к любой из основных систем шин через обходной выключатель. [5]
Обходная система шин может быть применена как при двух основных ( рабочих) системах, так и при одной системе. На промышленных предприятиях обходная система шин применяется сравнительно редко, например на крупных УРП районного значения с большим числом присоединений. [6]
Обходная система шин в РУ НО-220 кВ охватывает выключатели всех присоединений. В схеме с одной секционированной системой сборных шин используют отдельные обходные выключатели на каждой секции шин. В схеме с двумя несекционированными системами сборных шин используют отдельный обходной выключатель, в схеме же с секционированием-совмещенные обходной и шиносоеди-нительный выключатели на каждой секции. В закрытых РУ допускается в этом случае иметь отдельные шиносоеди-нительные и обходные выключатели, если их совмещение конструктивно невозможно. [7]
Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой из основных систем шин через обходный выключатель. [8]
Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой из основных систем шин через отдельный обходной выключатель. [10]
Обходная система шин в РУ ПО-220 кВ охватывает выключатели всех присоединений. В схеме с одной секционированной системой сборных шин используют отдельные обходные выключатели на каждой секции шин. В схеме с двумя несекционированными системами сборных шин используют отдельный обходной выключатель, в схеме же с секционированием-совмещенные обходной и шиносоеди-нительный выключатели на каждой секции. В закрытых РУ допускается в этом случае иметь отдельные шиносоеди-нительные и обходные выключатели, если их совмещение конструктивно невозможно. [11]
Читайте также: Can шина для магнитолы toyota
Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. [12]
Обходная система шин ( рис. 2 — 44) предусматривается, когда необходимы маневренность и гибкость оперативных переключений, а также когда требуется частая ревизия выключателей по характеру их работы, например на электропечных подстанциях. Она позволяет вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Обходную систему шин можно присоединить к любой системе шин через отдельный обходной выключатель. [14]
Обходная система шин дает возможность вывести в ревизию или в ремонт любую рабочую систему шин и любой выключатель без перерыва питания. Ее можно присоединить к любой из основных систем шин через отдельный обходной выключатель. [15]
Видео:Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)Скачать
Применение обходной системы шин
Схемы РУ с одной или двумя системами шин всех модификаций имеют общий существенный недостаток, заключающийся в том, что ремонт выключателей или разъединителей присоединений неизбежно связан с перерывом работы потребителей. При напряжениях 110 кВ и выше длительность ремонта выключателей, особенно воздушных, настолько велика, что отключение присоединений часто становится недопустимым. Исключить отмеченный недостаток позволяет применение обходной системы шин. Ниже рассмотрены примеры использования обходных шин и способы их подключения.
Схема РУ с одной рабочей и обходной системами шин. Простейший вариант такой схемы получается при добавлении обходной системы к рабочей не-секционированной системе шин (рис. 1.12). Схема включает следующие элементы: рабочую систему шин А1, обходную систему шин АО, обходной выключатель QO, выключатели присоединений Ql, Q2. разъединители QS1, QS2.
Любое присоединение, например W1, подключается к рабочей системе шин А1 через линейный разъединитель QS2, выключатель Q1, шинный разъединитель QS1, а к обходной системе шин — через обходной разъединитель QSO1. В нормальном режиме рабочая система шин находится под напряжением. Выключатели присоединений, линейные и шинные разъединители включены. Обходной выключатель QO и обходные разъединители QSO1 отключены, обходные разъединители, обозначенные на схеме QSO, включены. Обходная система шин находится без напряжения. На время ремонта или ревизии любого линейного выключателя он может быть заменен обходным выключателем QO. Например, при замене выключателя Q1 надо произвести следующие операции:
-включить обходной выключатель QO для проверки исправности обходной системы шин;
-отключить разъединители QS1 и QS2.
Достоинства схемы: разъединители во всех цепях предназначены только для обеспечения безопасности выполнения ремонтных работ, что соответствует их главному назначению; возможность ревизии и опробования выключателей без перерыва работы; простота схемы определяет небольшую стоимость выполнения РУ.
Недостатки схемы: при КЗ на линии должен отключиться соответствующий выключатель, а все остальные присоединения должны остаться в работе. Однако при отказе этого выключателя отключатся выключатели источников питания.
Короткое замыкание на рабочей системе шин или на шинных разъединителях также вызывает автоматическое отключение всех источников питания. В обоих случаях прекращается электроснабжение всех потребителей на время, необходимое для устранения повреждения.
Указанные недостатки устраняются путем разделения рабочей системы шин на секции и равномерным распределением источников питания и отходящих линий между секциями. В таких схемах РУ в цепи каждой секции предусматривается отдельный обходной выключатель или в целях экономии для обеих секций используют один обходной выключатель (рис. 1.13).
Эта схема состоит из следующих элементов:
-рабочей системы шин А, секционированной секционным выключателем QB на две секции 1ВА и 2ВА;
-выключателей присоединений Q1 ,Q2. ;
Обходной выключатель QO может быть присоединен к любой секции с помощью развилки из двух разъединителей QS3 и QS4. Например, при включенном разъединителе QS3 и при отключенном QS4 обходной выключатель будет подключен к секции 1ВА.
Режимы работы секционного выключателя QB зависят от типа электроустановки (электростанция или подстанция), для которой предназначена данная схема РУ. Здесь же следует отметить, что одновременное включение разъединителей QS3 и QS4 недопустимо, так как в противном случае секционный выключатель QB будет шунтирован.
В этой схеме обходной выключатель QO также может заменить выключатель любого присоединения, например Q1, для чего надо произвести следующие операции:
-отключить разъединитель QS4 (если он был включен);
-включить разъединитель QS3 (если он был отключен);
— кратковременно включить обходной выключатель QO для проверки исправности обходной системы шин;
— включить QSO1 и включить QO;
— отключить разъединители QS1 и QS2.
После указанных операций линия W1 будет получать питание через обходную систему шин и выключатель QO от первой секции 1ВА (рис. 1.14).
Иногда функции обходного и секционного выключателей совмещают (рис. 1.15). Здесь обходной выключатель QO присоединяется к рабочим секциям через перемычку из двух разъединителей QS1 и QS2. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции 2ВА и также включен. Таким образом, секции 1ВА и 2ВА соединены между собой через QS4, QO, QSO, QS2, QS1, и обходной выключатель выполняет функции секционного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки QS2, а затем использовать QO по его назначению. При этом на все время ремонта линейного выключателя параллельная работа секций нарушается.
Читайте также: Матадор шины 185 75 r16c шипованная
Достоинства схемы: при КЗ на сборных шинах или при отказе линейных выключателей при КЗ на линии теряется только 50 % всех присоединений; возможность ревизий и опробование выключателей без перерыва работы; относительная простота схемы и низкая стоимость РУ.
Недостаток схемы заключается в том, что при ремонте рабочей системы шин необходимо отключить все источники питания и отходящие линии.
Схема (рис. 1.15) может использоваться для подстанций (110 кВ) при числе присоединений до шести включительно, когда нарушение параллельной работы линии допустимо и отсутствует перспектива дальнейшего развития.
При большем числе присоединений (более 7) рекомендуется схема с отдельным обходным и секционным выключателями. Это позволяет сохранить параллельную работу линий при ремонтах выключателей.
Рассмотренные схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию.
На электростанциях возможно применение схемы с одной секционированной системой шин, но с отдельными обходными выключателями на каждую секцию.
Как уже отмечалось, в схемах с одной рабочей и обходной системами шин при необходимости ремонта рабочей системы шин требуется отключение всех присоединений на время ремонта, из-за чего нарушается электроснабжение потребителей. Применение схемы с двумя рабочими и обходной системами шин устраняет этот недостаток.
Схема РУ с двумя рабочими и обходной системами шин (рис.1.16) включает рабочие системы шин А1 и А2, обходную систему шин АО, выключатели присоединений Ql, Q2. обходной выключатель QO, шиносоединительный выключатель QA, разъединители QS1, QS2,… Каждое присоединение, например W1, подключается к рабочим системам шин через развилку из двух шинных разъединителей QS1 и QS2, что позволяет осуществлять работу как на одной, так и на другой системе шин. Как правило, обе системы шин находятся в работе при соответствующем фиксированном (равномерном) распределении всех присоединений, например присоединения с нечетными номерами подключены к первой рабочей системе шин А1, присоединения с четными номерами подключены ко второй рабочей системе шин А2. В нормальном режиме шиносоединительный выключатель QA включен, обходной выключатель QO отключен и обходная система шин находится без напряжения. Обходные разъединители QSO отключены; разъединитель обходного выключателя QO включен. Такое распределение присоединений увеличивает надежность системы, так как при КЗ на шинах отключается шиносоединительный выключатель QA и только половина присоединений теряет питание. Если повреждение на шинах устойчивое, то отключившиеся присоединения переводят на исправную систему шин.
Достоинства схемы с двумя рабочими и обходной системами шин: имеются условия для ревизий и опробований выключателей без перерыва работы; существует возможность перегруппировки присоединений между системами шин, что бывает необходимо при изменении схемы сети, режима работы системы и др.; возможность проведения ремонта любой системы шин, сохраняя в работе все присоединения.
Недостатки этой схемы, отказ одного выключателя при аварии приводит к отключению всех источников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения; повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, то есть приводит к отключению всех присоединений; большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ.
Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин (рис. 1.17). Обе рабочие системы шин находятся в работе при фиксированном распределении присоединений между секциями. Шиносоединительные выключатели QA1 и QA2 включены. Обходные выключатели QO1 и QO2 отключены. Обходная система шин находится без напряжения. Состояние секционных выключателей QB1 и QB2 определяется типом электроустановки, в которой применяется данная схема РУ.
Рис. 1.17. Схема с двумя секционированными рабочими
В этой схеме РУ при повреждении на шинах или при КЗ в линии и отказе линейного выключателя теряется только 25 % присоединений (на время переключений), при повреждении в шиносоединительном выключателе теряется 50 % присоединений. Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение схемы, где совмещены шиносоединительный и обходной выключатели. В нормальном режиме разъединитель QS2 отключен, разъединители QS1, QSO, QS3 включены, обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта выключателя любого присоединения, например W1, отключают выключатель QOA1 и разъединитель QS3 и используют выключатель по его прямому назначению. В схемах с большим числом линий количество таких переключений значительно, что приводит к усложнению эксплуатации, поэтому имеется тенденция к отказу от совмещения шиносоединительного и обходного выключателей. РУ, выполненные по схеме с двумя рабочими и обходной системами шин, применяются на электростанциях и подстанциях при напряжении 110-220 кВ. На станциях при числе присоединений 12-14 секционируется одна система шин, при большем числе присоединений — обе системы шин. На подстанциях секционируется одна система шин при напряжении 220 кВ и числе присоединений 12-15 или при установке трансформаторов мощностью 125 МВА и более; при напряжениях 110-220 кВ обе системы секционируются при числе присоединений более 15. При напряжениях 330 кВ и выше применение схем с двумя рабочими и обходной системами шин нецелесообразно, так как разъединители в таких схемах используются в качестве оперативных аппаратов. Большое количество операций разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочного отключения тока нагрузки разъединителями. Кроме этого, необходимость установки шиносоединительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🎦 Видео
3.1 ДЗШ 110 кВ УРОВ 110 кВ 1Скачать
Модель подстанцииСкачать
Вывод ремонт секции шин.Скачать
РЗ #51 Дифференциальная защита шин (часть 1)Скачать
✅Для чего служит ЗОН 110кВ?Скачать
Реализация маркированных шин / Шинный ЭкспертСкачать
Лапидус А.В. Оперативные переключения глазами релейщика.Скачать
Оперативные блокировки в распределительных устройствахСкачать
ДЗШ 110кВ на ПС 220/110/10кВСкачать
ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать
3.3 Системы оперативного тока подстанции 2 1Скачать
Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
лекция 403 CAN шина- введениеСкачать
Логическая защита шин (ЛЗШ)Скачать
Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
РЗ #53 Дифференциальная защита шин (часть 3)Скачать