Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Авто помощник

Видео:№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Высота цилиндра равна 3, а радиус основания равен 13.

а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.

б) Найдите расстояние от плоскости сечения до центра основания цилиндра.

а) Пусть OO1 — ось цилиндра. Проведем AB и CD параллельно оси цилиндра. Проведем BD и AC. Так как через две параллельные прямые проходит единственная плоскость, то прямоугольник BDCA — искомое сечение (см. рис.).

б) В этом прямоугольнике одна сторона будет равняться высоте цилиндра, а вторая — хорде окружности, лежащей в основании. Так как то где x — хорда AC. Проведем OH перпендикулярно AC. В силу того, что треугольник ACO равнобедренный, точка H также будет являться серединой AC. Тогда из прямоугольного треугольника, у которого гипотенуза — радиус OC, а один катет — половина этой хорды, находим второй катет OH по теореме Пифагора.

Таким образом, расстояние от центра окружности до сечения равно 5.

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Задача на вычисление высоты цилиндраСкачать

Задача на вычисление высоты цилиндра

Презентация по геометрии на тему «Цилиндр. Сечения цилиндра»

Ищем педагогов в команду «Инфоурок»

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Описание презентации по отдельным слайдам:

Пособие по геометрии для 11 класса Составила Учитель математики СШ №115 г. Донецка Корсун Людмила Николаевна

Цилиндром (круговым цилиндром) называется тело, состоящее из двух кругов, которые не лежат в одной плоскости, а совмещаются параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.

Круги – основания цилиндра. Отрезки, соединяющие соответствующие точке окружностей кругов, — образующие. AB – образующая цилиндра. Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. O1A – радиус основания цилиндра.

Свойства цилиндра Основания цилиндра равны и параллельны. Образующие цилиндра параллельны и равны. AA1=BB1 Высота цилиндра (расстояние между плоскостями оснований) равна образующей. Hцил. = AA1 = OO1

При вращении прямоугольника около его стороны как оси образуется цилиндр. AA1 O1O – прямоугольник. OO1 – ось образованного цилиндра.(OO1 || AA1) Rцил. = OA = O1A1

Площадь поверхности и объем цилиндра

Сечения цилиндра плоскостями. Осевое сечение цилиндра. AA1 B1B – осевое сечение (сечение, проходящее через ось цилиндра OO1) AA1 B1B – прямоугольник (если AA1 B1B – квадрат, то цилиндр называется равносторонним). AB = dосн. = 2R; AA1 = Hцил.

Сечение цилиндра плоскостью, параллельной его оси. (ABC) || OO1; ABCD – прямоугольник; AB и CD – образующие цилиндра; AB = Hцил.

Сечение цилиндра плоскостью, параллельной его оси Плоскость, параллельная плоскости основания цилиндра, пересекает его боковую поверхность по окружности основания. Rпер. = Rцил.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Международная дистанционная олимпиада Осень 2021

Вам будут интересны эти курсы:

Оставьте свой комментарий

Минтруд предложил проект по реабилитации детей-инвалидов

Школьников не планируют переводить на удаленку после каникул

В школе в Пермском крае произошла стрельба

Минобрнауки утвердило перечень олимпиад для школьников на 2021-2022 учебный год

Минобразования Кузбасса рекомендовало техникумам и школам уйти на каникулы до 7 ноября

В Москве стартует онлайн-чемпионат для школьников Soft Skills — 2035

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать

№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту

Цилиндры

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Основные определения и свойства цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .

Совокупность всех образующих цилиндра называют цилиндрической поверхностью .

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Видео:№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник AA1B1B .

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

введем следующие обозначения

Vобъем цилиндра
Sбокплощадь боковой поверхности цилиндра
Sполнплощадь полной поверхности цилиндра
Sоснплощадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

Видео:№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать

№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Высота цилиндра равна 3, а радиус основания равен 13.

а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.

б) Найдите расстояние от плоскости сечения до центра основания цилиндра.

а) Пусть OO1 — ось цилиндра. Проведем AB и CD параллельно оси цилиндра. Проведем BD и AC. Так как через две параллельные прямые проходит единственная плоскость, то прямоугольник BDCA — искомое сечение (см. рис.).

б) В этом прямоугольнике одна сторона будет равняться высоте цилиндра, а вторая — хорде окружности, лежащей в основании. Так как то где x — хорда AC. Проведем OH перпендикулярно AC. В силу того, что треугольник ACO равнобедренный, точка H также будет являться серединой AC. Тогда из прямоугольного треугольника, у которого гипотенуза — радиус OC, а один катет — половина этой хорды, находим второй катет OH по теореме Пифагора.

Таким образом, расстояние от центра окружности до сечения равно 5.

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Oo1 ось цилиндра aa1b1b осевое сечение цилиндра найти высоту цилиндра

Высота цилиндра равна 5, а радиус основания 10.

а) Докажите, что площадь боковой поверхности цилиндра равна площади его основания.

б) Найдите площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра на расстоянии 6 от неё.

а) Вспомним, что площадь боковой поверхности цилиндра вычисляется по формуле , где — радиус основания, — высота цилиндра. В данном случае , поэтому , откуда и следует требуемое.

б) Сечение цилиндра плоскостью, проходящей параллельно его оси OO1, — прямоугольник ABB1A1 (O и AB — соответственно центр и хорда нижнего основания цилиндра), AA1 = 5. Расстояние от оси цилиндра до плоскости сечения равно высоте OH треугольника OAB. OA = OB = 10, OH = 6, откуда

Критерии оценивания выполнения заданияБаллы
Обоснованно получен верный ответ.2
Решение содержит обоснованный переход к планиметрической задаче, но получен неверный ответ или решение не закончено, или при правильном ответе решение недостаточно обосновано.1
Решение не соответствует ни одному из критериев, перечисленных выше.0
Максимальный балл2

В условии сказано, что дан цилиндр: «Высота цилиндра. «, а в решении рассмотрен прямой цилиндр. Действительно, ответ такой же получится при решении задачи с наклонным цилиндром, но тем не менее, в сечении образуется параллелограмм, а не прямоугольник: прямая АА1 параллельна и равна прямой ВВ1, как образующие, которые параллельны, в свою очередь оси цилиндра — прямой ОО1. По признаку параллельности прямой и плоскости получаем, что ОО1 параллельна плоскости (АА1ВВ1). И уже нельзя говорить, что ОО1 является высотой, ведь цилиндр может быть и наклонным. Прямая ОО1 является осью цилиндра. А условная прямая О1М может являться высотой цилиндра (точка М может совпасть с точкой О, если цилиндр прямой). Она будет являться и высотой параллелограмма (это может быть и прямоугольник, который по определению также является параллелограммом).

Таким образом, ответ хотя и верный, но рассмотрено частное решение данной задачи. Либо составители допустили ошибку не указав, что дан прямой цилиндр (в 2018-ом же писали: «. образующая перпендикулярна плоскости основания»), либо решение данной задачи следует подправить.

В школьном курсе задачи о наклонных цилиндрах не рассматриваются.

🎥 Видео

Объем цилиндра.Скачать

Объем цилиндра.

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.Скачать

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.

№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположныеСкачать

№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные

11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого

ЦИЛИНДР геометрия егэ по математике профильный уровень ЯщенкоСкачать

ЦИЛИНДР геометрия егэ по математике профильный уровень Ященко

Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

Объем цилиндраСкачать

Объем цилиндра

ЕГЭ БАЗА 16 номер Радиус основания цилиндра равен 15, а его образующая равна 14Скачать

ЕГЭ БАЗА 16 номер Радиус основания цилиндра равен 15, а его образующая равна 14

№532. Через образующую АА1 цилиндра проведены две секущие плоскости, одна из которыхСкачать

№532. Через образующую АА1 цилиндра проведены две секущие плоскости, одна из которых

№533. Высота цилиндра равна h, а площадь осевого сечения равна 5. Найдите площадь сеченияСкачать

№533. Высота цилиндра равна h, а площадь осевого сечения равна 5. Найдите площадь сечения
Поделиться или сохранить к себе:
Технарь знаток