Опорные и проходные изоляторы

Опорные и проходные изоляторы

Станционные и аппаратные изоляторы распределительных устройств но своему назначению и конструкции разделяются на опорные и проходные. Опорные изоляторы используются для крепления шин и токопроводов открытых и закрытых распределительных устройств и аппаратов. Проходные изоляторы применяются при переходе токопроводов сквозь стены или для ввода напряжения внутрь металлических баков трансформаторов, конденсаторов, выключателей и других аппаратов.

Основным изолирующим материалом опорных изоляторов является фарфор. В последнее время стали популярны полимерные опорные и проходные изоляторы. В проходных изоляторах на напряжение 35 кВ и выше, помимо фарфора, широко используется бумажно-масляная и маслобарьерная изоляция.

Опорные изоляторы для внутренней установки на напряжение 3 — 35 кв выполняются, как правило, стержневого типа и состоят из фарфорового тела и металлической арматуры. В изоляторах с внутренней герметизированной полостью (рис. 1, а) арматура в виде шапки для закрепления шин и круглого или овального основания скрепляется с фарфором с помощью цемента.

Ребристость развита слабо и служит для некоторого увеличения разрядного напряжения. Наибольшее влияние оказывает ребро, расположенное у шапки, которое несколько выравнивает поле в области наиболее высоких напряженностей, откуда начинается развитие разряда.

Опорные и проходные изоляторы

Рис. 1. Опорные изоляторы типа ОФ-6 для внутренней установки.

Это ребро делается наибольшим. Изоляторы с внутренней заделкой арматуры (рис. 1, б) имеют меньшие вес, высоту и несколько лучшие электрические характеристики по сравнению с изоляторами с воздушной полостью. Достигается это потому, что при внутренней заделке арматуры наибольшие напряженности наблюдаются в фарфоре, воздушная полость отсутствует, а арматура играет роль внутреннего экрана.

Опорные изоляторы, предназначенные для работы в открытых распределительных устройствах , имеют развитую ребристость для обеспечения необходимых разрядных характеристик при дожде.

Опорные штыревые изоляторы типа ОНШ выпускаются на напряжения 6 — 35 кВ и состоят из одного (рис. 2,а), двух или трех (рис. 2, б) фарфоровых тел, скрепленных с помощью цемента друг с другом и с арматурой. Крепление ошиновки и изоляторов осуществляется с помощью болтов. На напряжение 110, 150 и 220 кВ штыревые изоляторы собираются в колонки соответственно из трех> четырех и пяти изоляторов ОНШ-35.

Опорные и проходные изоляторы

Рис. 2. Опорные штыревые изоляторы для наружной установки: а — ОНШ-10-500, б — ОШП-35-2000.

Стержневые изоляторы для наружной установки типа ОНС выпускаются на напряжения до 110 кВ (рис. 3). Число и размеры ребер выбираются на основании опыта. При отношении вылета ребра а к расстоянию между ребрами, равном примерно 0,5, мокро-разрядные напряжения при данном разрядном расстоянии получаются наибольшими.

Опорные и проходные изоляторы

Рис. 3. Стержневой опорный изолятор для наружной установки ОНС-110-300.

Применяются также стержневые опорные изоляторы с внутренней полостью. Диаметр таких изоляторов больше, чем сплошных стержневых, что обеспечивает их большую механическую прочность. Однако у таких изоляторов возможны разряды во внутренней полости, для предотвращения которых внутренние полости герметизируют с помощью фарфоровых перегородок или заливают компаундом.

На напряжение 330 кВ и выше одиночные колонки изоляторов получаются очень высокими и не обеспечивают необходимую механическую прочность на изгиб. Поэтому при этих напряжениях применяют опорные конструкции чаще всего в виде конусообразного треножника из трех колонок изоляторов. При изгибающих усилиях изоляторы в таких конструкциях работают не только на изгиб, но и на сжатие.

Напряжения по элементам высокой колонки опорных изоляторов, так же как и в подвесной гирлянде, распределяются неравномерно. Для выравнивания напряжения применяют тороидальные экраны, закрепляемые на верхнем элементе колонки.

Опорные и проходные изоляторы

Рис. 4. Опорно-стержневые изоляторы ОС

Проходные изоляторы на напряжение 6 — 35 кВ изготавливаются чаще всего фарфоровыми. Конструктивное их выполнение определяется напряжением, током, допустимой механической нагрузкой на изгиб и окружающей средой.

Изолятор (рис. 5) состоит из фарфорового тела цилиндрической формы 1, плотно скрепленного с помощью армированных на цементе металлических концевых колпачков 2 с токоведущим стержнем 3. Фланец 4 служит для крепления изолятора к стене здания или корпусу аппарата. Так же как и изоляторы других типов, проходные выполняются таким образом, что бы напряжение пробоя было выше напряжения перекрытия вдоль поверхности.

Напряжение пробоя фарфоровых проходных изоляторов зависит от толщины фарфора. Однако конструкция таких изоляторов практически определяется необходимой механической прочностью, расчетным напряжением перекрытия и мерами по устранению короны.

Изоляторы на 3—10 кВ выполняются с внутренней воздушной полостью 5.

Опорные и проходные изоляторы

Рис. 5. Проходные фарфоровые изоляторы: а — на напряжения 6 — 10 кВ для внутренней установки, б — на напряжение 35 кВ сплошной конструкции для наружной установки.

Специальных мер для устранения возможности коронирования при таких напряжениях принимать не надо. При напряжениях 20—35 кВ возможно появление короны у стержня напротив фланца, где наблюдается наибольшая напряженность поля в воздухе. Для предотвращения коронирования изоляторы на такие напряжения изготавливаются без воздушной полости (рис. 5, б). При этом наружная поверхность фарфора металлизируется и соединяется со стержнем.

Читайте также: Шинах без рисунка протектора

Для устранения возможности появления разрядов у фланца фарфоровая поверхность под ним также металлизируется и заземляется. Напряжение возникновения скользящих разрядов от фланца вдоль поверхности фарфора и, следовательно, напряжения перекрытия по поверхности могут быть увеличены снижением поверхностной емкости. Для этого или увеличивают диаметр изолятора у фланца, или поверхность изолятора выполняют ребристой, располагая более массивные ребра вблизи фланца.

Опорные и проходные изоляторы

Рис. 6. Полимерный проходной изолятор на 10 кВ

Изоляторы, предназначенные для ввода напряжения из одной среды в другую (воздух — масло и т. д.), выполняются несимметричными относительно фланца. Например, путь перекрытия в масле можно брать в 2,5 раза меньшим, чем в воздухе. Ввод, один конец которого находится в помещении, а второй — на открытом воздухе, изготавливается также несимметричным, наружная часть имеет более развитую ребристость для увеличения мокроразрядного напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Видео:Тарелочки на проводах. Изоляторы, виды-назначение и конструкция. #изоляторы#тарелочкиСкачать

Тарелочки на проводах. Изоляторы,  виды-назначение и конструкция. #изоляторы#тарелочки

Шинные конструкции и изоляторы

Опорные и проходные изоляторы

Электрический ток от источника передается по шинной конструкции (называемой также шиной) в распределительное устройство (РУ). Пройдя через электрические аппараты соответствующей ячейки РУ, ток поступает на сборные шины и далее в линии электрической сети. Во всех электроустановках, рассчитанных на большие токи, электрическое соединение аппаратов выполняют шинами.
Шины укрепляют на изоляторах шинодержателями. На рис. 1 показана конструкция шинодержателя, крепящего на изоляторе пакет из трех шин прямоугольного сечения. Шины 2 болтами 3 и накладками 1 и 4 жестко закрепляют в держателе и присоединяют винтами к головке изолятора 5. Одну из накладок (например, 4) или болт делают из немагнитного материала во избежание создания большого магнитного потока по контуру держателя и его сильного нагрева.
Способ расположения пакетов шин в трехфазной шинной конструкции выбирают с учетом следующих соображений:
наилучшие условия охлаждения шин получают при расположении их на ребро (рис. 2, а);
наибольшая прочность шин на изгиб под действием электромагнитных сил взаимного притяжения и отталкивания, достигающих очень больших значений при коротких замыканиях, получается при расположении шин плашмя (рис. 2, б);

Рис. 1. Шинодержатель:
1,4 — накладки; 2 — шина; 3 — болт; 5— изолятор

фарфор опорных изоляторов лучше работает на сжатие, т.е. при расположении шин на ребро, чем на изгиб.
Исходя из этого лучше всего располагать шины на ребро. Расстояние между шинами а зависит от номинального напряжения шинной конструкции и должно соответствовать действующим нормам.
Отрезки шин соединяют в единую полосу или сваркой, или болтами с упругими шайбами. Для контроля за нагревом мест соединения рекомендуется окрашивать их термокраской, изменяющей свой цвет при повышении температуры выше установленной.

Опорные и проходные изоляторы

Рис. 2. Расположение шин в трехфазной конструкции на ребро (а) и плашмя (б)
Рис. 3. Опорные изоляторы внутренней (а) и наружной (б) установок:
1 — чугунный колпачок; 2 — фарфоровый корпус; 3 — слой мастики; 4 — фланец

Опорные и проходные изоляторы

Изоляторы служат для крепления проводов и шинных конструкций и для изоляции их от заземленных частей. Изоляторы изготавливают из фарфора или стекла. На рис. 3, а показано устройство фарфорового опорного изолятора на 3. 10 кВ типа ОФ, предназначенного для установки внутри помещений. Роль изоляции выполняет фарфоровый корпус 2, на котором сверху укреплен чугунный колпачок 1, а снизу — фланец 4. Ввиду того, что коэффициенты температурного расширения фарфора и чугуна сильно различаются, в изоляторе чугун и фарфор разделены слоем мастики 3, склеивающей их. На рис. 3, б представлен опорный штыревой изолятор на 35 кВ для наружной установки типа ОНСМ. Опорные изоляторы наружной установки отличаются тем, что поверхность фарфорового корпуса сделается ребристой для предотвращения перекрытия изолятора скользящими разрядами по поверхности в сырую погоду.
На рис. 3 изображен проходной изолятор, предназначенный для перехода шинной конструкции из одного помещения в другое.

Рис. 3. Проходной изолятор на 3. 10 кВ:
I — шина; 2 — изолятор; 3 — проходная часть; 4, 5 — колпачки

Проходные изоляторы применяют для наружной (типов Г1Н, ПН М-10, 20, 35 кВ) и внутренней (типа П-6, 10 кВ) установок.
Шины, рассчитанные на напряжение 35 кВ и более, а также провода линии укрепляют на подвесных изоляторах. Фарфор, чугунный колпачок и пестик склеивают мастикой. Провод специальным соединителем прикрепляют к пестику. Из таких изоляторов собирают гирлянду из 3. 15 элементов и более — в зависимости от номинального напряжения линии. Для соединения изоляторов пестик вставляют в отверстие колпачка следующего элемента гирлянды.

Читайте также: Аварийный герметик для ремонта проколотых шин hi gear hg5339

Видео:Изолятор ИПУСкачать

Изолятор ИПУ

Какие бывают электрические изоляторы и для чего они предназначены?

Обязательным условием для передачи электрической энергии является проводниковый материал, необходимый для протекания тока. Но для исключения возможности попадания потенциала на несущие конструкции и другие элементы устанавливаются электрические изоляторы. В современной электротехнике невозможно представить себе работу каких-либо силовых устройств без изоляторов.

Видео:Замена проходных и опорных изоляторов на ТПСкачать

Замена проходных и опорных изоляторов на ТП

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной. Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках [ 1 ].

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

Опорные и проходные изоляторы

  • Сухоразрядное напряжение — это такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

Опорные и проходные изоляторы

Рис. 2. Изолятор под дождем

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Видео:изоляторыСкачать

изоляторы

Типовая конструкция

Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.

Опорные и проходные изоляторы

Рис. 3. Изолятор в разрезе

Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.

В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.

Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.

Читайте также: Порядок наложения жгута шины

Опорные и проходные изоляторы

Рис. 4. Конструкция проходного изолятора

Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.

Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.

Видео:Блог №4. Опорные изоляторыСкачать

Блог №4. Опорные изоляторы

Обозначения изоляторов

В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.

  • Первая буква Н указывает на назначение модели, в данном случае Н — натяжной. Также может быть К – консольный, Ф – фиксаторный, П – подвесной.
  • С – обозначает, что это стержневой изолятор.
  • П – изоляционный материал, в данном случае П – полимер.
  • К – наружное покрытие, в данном случае кремнийорганическая резина.
  • р – индекс, обозначающий, что защитная оболочка ребристая цельнолитая.
  • 120 – показатель нормированного разрушающего усилия в кН.
  • 3 – класс напряжения проводов ВЛ, для которого применяется.
  • 0,6 – обозначает длину пути тока утечки, измеряемую в метрах.
  • Б — обозначает вид зацепления.

Видео:Изолятор ИПК-10-4000-У15 проходной фарфоровыйСкачать

Изолятор ИПК-10-4000-У15 проходной фарфоровый

Классификация

Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.

По назначению

В зависимости от назначения выделяют такие виды изоляторов:

Опорные и проходные изоляторы

  • Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
  • Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ. Рис. 5. Пример аппаратных изоляторов
  • Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.

По материалу исполнения

В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:

  • С фарфоровым корпусом – отличаются высокой механической прочностью на сжатие, но боятся динамических воздействий. Для предотвращения появления проводящих каналов, из-за оседания пыли и грязи на поверхности, керамический материал покрывается глазурью.
  • Полимерные изоляторы – подразделяются на модели, которые имеют упругую деформацию и монолитные. Отличаются куда большим удельным сопротивлением материала, чем фарфоровые. Но мягкая поверхность в большей мере подвержена загрязнению, чем покрытый глазурью фарфор. Помимо этого из-за воздействия ультрафиолета полимер разрушается и утрачивает свойства, поэтому их применяют для внутренней установки.
  • Стеклянные электрические изоляторы – отличаются не такой высокой прочностью, подвержены сколам при динамических воздействиях. Но в отличии от других материалов не подвержены воздействию агрессивных реагентов. Обладают меньшим весом и более просты в обслуживании, чем фарфоровые.

По способу крепления на опоре

В зависимости от способа крепления бывают:

Опорные и проходные изоляторы

Классификация по способу крепления

  • Штыревого типа (а) – крепятся посредством металлической арматуры и выступают в роли опоры воздушных ЛЭП, откуда и возникло название опорно-штыревые изоляторы.
  • Подвесные (б) – выполняются тарельчатыми изоляторами, которые собираются в гирлянды, в зависимости от класса напряжения присоединенных к ним электрических аппаратов.
  • Стержневые (в) – имеют форму сплошного стержня, который устанавливается в качестве опорного или подвешивается за элементы арматуры в качестве натяжного. Опорно-стержневые изоляторы устанавливается в распредустройствах для изоляции шин. На их краях посредством чугунных крыльев крепятся токоведущие части.

Видео:пробой проходного изолятора. #shorts #электрика #изоляторСкачать

пробой проходного изолятора. #shorts #электрика #изолятор

Видео в дополнение темы

Обзор электрических изоляторов типа «ПС»:


🔍 Видео

Предновогодний выпуск!ТФ 3|Опорные изоляторы|Изолятор ИТ 30 [insulator hunt]Скачать

Предновогодний выпуск!ТФ 3|Опорные изоляторы|Изолятор ИТ 30 [insulator hunt]

Изоляторы ИПТ и ИПТВСкачать

Изоляторы ИПТ и ИПТВ

ГОРИТ ОПОРНЫЙ ИЗОЛЯТОР ПК-10 кВСкачать

ГОРИТ ОПОРНЫЙ ИЗОЛЯТОР ПК-10 кВ

Опорный полимерный изоляторСкачать

Опорный полимерный изолятор

Опорные композитные изоляторы (2018.10.12)Скачать

Опорные композитные изоляторы (2018.10.12)

Испытание опорного изолятораСкачать

Испытание опорного изолятора

Изоляторы фарфоровые опорно-стержневые ИОССкачать

Изоляторы фарфоровые опорно-стержневые ИОС

Что под юбкой у изолятора? #энерголикбез #заминутуСкачать

Что под юбкой у изолятора? #энерголикбез #заминуту

Преимущества полимерных изоляторов SMLСкачать

Преимущества полимерных изоляторов SML

Зачем моют ИЗОЛЯТОРЫ ПОД НАПРЯЖЕНИЕМ ? #секрет #энерголикбез #заминутуСкачать

Зачем моют ИЗОЛЯТОРЫ  ПОД НАПРЯЖЕНИЕМ ? #секрет #энерголикбез #заминуту

Интересные и необычные элементы высоковольтных ЛЭП #энерголикбез #за3минСкачать

Интересные и необычные элементы высоковольтных ЛЭП #энерголикбез #за3мин

Испытание на излом изолятор опорный 130*80 (неудачный образец 2). polymer insulator. destruction.Скачать

Испытание на излом изолятор опорный 130*80 (неудачный образец 2). polymer insulator. destruction.

Устройство ЛЭП 10 и 35 киловольт. Опоры, изоляторы, провода, виброгасители, грозозащитный трос.Скачать

Устройство ЛЭП 10 и 35 киловольт. Опоры, изоляторы, провода, виброгасители, грозозащитный трос.
Поделиться или сохранить к себе:
Технарь знаток