- Архитектура ЭВМ
- Компоненты ПК
- Интерфейсы
- Мини блог
- Самое читаемое
- Введение
- Параллельные и последовательные интерфейсы
- Общая информация параллельных и последовательных интерфейсов
- Скорость передачи данных интерфейсов
- Повышения пропускной способности параллельных интерфейсов
- Повышения пропускной способности последовательных интерфейсов
- Что такое компьютерная шина (computer bus)
- 🎦 Видео
Архитектура ЭВМ
Компоненты ПК
Интерфейсы
Мини блог
Самое читаемое
Видео:Что означает маркировка на шинах! Значение цифр и букв на резине.Скачать
Введение
Видео:Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать
Параллельные и последовательные интерфейсы
Видео:15 Параллельные и последовательные интерфейсыСкачать
Общая информация параллельных и последовательных интерфейсов
Для компьютеров и связанных с ним устройств наиболее распространенной является задача передачи дискретных данных, и, как правило, в значительных количествах (не один бит). Самый распространенный способ представления данных сигналами — двоичный: например, условно высокому (выше порога) уровню напряжения соответствует логическая единица, низкому — логический ноль (возможно и обратное представление). Для того чтобы передавать группу битов, используются два основных подхода к организации интерфейса:
- параллельный интерфейс — для каждого бита передаваемой группы используется своя сигнальная линия (обычно с двоичным представлением), и все биты группы передаются одновременно за один квант времени. Примеры: параллельный порт подключения принтера (LPT-порт, 8 бит), интерфейс ATA/ATAPI (16 бит), SCSI (8 или 16 бит), шина PCI (32 или 64 бита);
- последовательный интерфейс — используется лишь одна сигнальная линия, и биты группы передаются друг за другом по очереди; на каждый из них отводится свой квант времени (битовый интервал). Примеры: последовательный коммуникационный порт (COM-порт), последовательные шины USB и FireWire, PCI Express, интерфейсы локальных и глобальных сетей.
На первый взгляд организация параллельного интерфейса проще и нагляднее и этот интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, с которой мирятся ради вожделенной скорости. У последовательного интерфейса приемопередающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы.
Видео:Такие разные гибриды. Как это работаетСкачать
Скорость передачи данных интерфейсов
Теперь подробнее разберемся со скоростью передачи данных. Очевидно, что она равна числу бит, передаваемых за квант времени, деленному на продолжительность кванта. Для простоты можно оперировать тактовой частотой интерфейса — величиной, обратной длительности кванта. Это понятие естественно для синхронных интерфейсов, у которых имеется сигнал синхронизации (clock), определяющий возможные моменты возникновения всех событий (смены состояния). Для асинхронных интерфейсов можно воспользоваться эквивалентной тактовой частотой — величиной, обратной минимальной продолжительности одного состояния интерфейса. Теперь можно сказать, что максимальная (пиковая) скорость передачи данных равна произведению тактовой частоты на разрядность интерфейса. У последовательного интерфейса разрядность 1 бит, у параллельного она соответствует числу параллельных сигнальных цепей передачи битов данных. Остаются вопросы о достижимой тактовой частоте и разрядности. И для последовательного, и для параллельного интерфейсов максимальная тактовая частота определяется достижимым (при разумной цене и затратах энергии) быстродействием приемопередающих цепей устройств и частотными свойствами кабелей. Здесь уже очевидны выгоды последовательного интерфейса: для него, в отличие от параллельного интерфейса, затраты на построение высокоскоростных элементов не приходится умножать на разрядность.
В параллельном интерфейсе существует явление перекоса (skew), существенно влияющее на достижимый предел тактовой частоты. Суть его в том, что сигналы, одновременно выставленные на одной стороне интерфейсного кабеля, доходят до другого конца не одновременно из-за разброса характеристик цепей. На время прохождения влияет длина проводов, свойства изоляции, соединительных элементов и т. п. Очевидно, что перекос (разница во времени прибытия) сигналов разных битов должен быть существенно меньше кванта времени, иначе биты будут искажаться (путаться с одноименными битами предшествующих и последующих посылок). Вполне понятно, что перекос ограничивает и допустимую длину интерфейсных кабелей: при одной и той же относительной погрешности скорости распространения сигналов на большей длине набегает и больший перекос. Перекос сдерживает и увеличение разрядности интерфейса: чем больше используется параллельных цепей, тем труднее добиться их идентичности. Из-за этого даже приходится «широкий» (многоразрядный) интерфейс разбивать на несколько «узких» групп, для каждой из которых используются свои управляющие сигналы. В 90-х годах в схемотехнике приемопередающих узлов стали осваиваться частоты в сотни мегагерц и выше, то есть длительность кванта стала измеряться единицами наносекунд. Достичь соизмеримо малого перекоса можно лишь в пределах жестких компактных конструкций (печатная плата), а для связи отдельных устройств кабелями длиной в десятки сантиметров пришлось остановиться на частотах, не превышающих десятков мегагерц. Для того чтобы ориентироваться в числах, отметим, что за 1 нс сигнал пробегает по электрическому проводнику порядка 20–25 см. Наносекунда — это период сигнала с частотой 1 ГГц.
Читайте также: Шины из китая в абакане
Повышения пропускной способности параллельных интерфейсов
Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию DDR (Dual Data Rate). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимаются только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних и тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса ATA (режимы UltraDMA) и прокатилась уже и по SCSI (Ultra160 и выше), и по памяти (DDR SDRAM). Кроме того, на высоких частотах применяется синхронизация от источника данных (Source Synchronous transfer): сигнал синхронизации, по которому определяются моменты переключения или действительности (валидности) данных, вырабатывается самим источником данных. Это позволяет точнее совмещать по времени данные и синхронизующие импульсы, поскольку они распространяются по интерфейсу параллельно в одном направлении. Альтернатива — синхронизация от общего источника (common clock) — не выдерживает высоких частот переключения, поскольку здесь в разных (пространственных) точках временные соотношения между сигналами данных и сигналами синхронизации будут различными.
Повышение частоты переключений интерфейсных сигналов, как правило, сопровождается понижением уровней сигналов, формируемых интерфейсными схемами. Эта тенденция объясняется энергетическими соображениями: повышение частоты означает уменьшение времени, отводимого на переключения сигналов. Чем выше амплитуда сигнала, тем выше должна быть скорость нарастания сигнала и, следовательно, выходной ток передатчика. Повышение выходного тока (импульсного!) нежелательно по разным причинам: большие перекрестные помехи в параллельном интерфейсе, необходимость применения мощных выходных формирователей, повышенное тепловыделение. Тенденцию снижения напряжения можно проследить на примере порта AGP (3,3/1,5/0,8 В), шин PCI/PCI-X (5/3,3/1,5 В), SCSI, шин памяти и процессоров.
Читайте также: Золотник для камерной шины
Повышения пропускной способности последовательных интерфейсов
В последовательном интерфейсе явления перекоса отсутствуют, так что повышать тактовую частоту можно вплоть до предела возможностей приемопередающих цепей. Конечно, есть ограничения и по частотным свойствам кабеля, но изготовить хороший кабель для одной сигнальной цепи гораздо проще, чем для группы цепей. А когда электрический кабель уже «не тянет» требуемые частоту и дальность, можно перейти на оптический, у которого есть в этом плане огромные, еще не освоенные «запасы прочности». Устраивать же параллельный оптический интерфейс — слишком дорогое удовольствие.
Вышеприведенные соображения объясняют современную тенденцию перехода на последовательный способ передачи данных.
Видео:ОСОБЕННОСТИ КОНСТРУКЦИИ ШИНЫ! КОНСТРУКЦИЯ РАДИАЛЬНОЙ ШИНЫ!Скачать
Что такое компьютерная шина (computer bus)
Персональный компьютер — устройство сколь сложное, столько и простое. Сложное оно потому, что за его элементами стоит многолетний труд инженеров. Просто из-за того, что внутреннее его устройство спроектировано как можно проще. Основным фактором этого является стандартизация узлов ПК. Сегодня речь пойдёт об одной из важнейших его составляющих — компьютерных шинах.
Как правило, на обывательском уровне принято уравнивать компьютерную шину и используемые ею разъём. Конечно, это неправильный подход. Разъём это один из составляющих компьютерной шины.
Если говорить обобщённо, то компьютерная шина это специализированная подсистема, которая отвечает за передачу данных между комплектующими персонального компьютера или между функциональными блоками.
Прародителями современных компьютерных шин были группы проводников, чья функция состояла в том, чтобы подключить оперативную память и различные периферийные устройства к центральному процессору. Уже на начальном этапе сложилась практика использования различных интерфейсов (разъёмов) для подключения устройств. Кроме того, определилось разделение шин на локальные (или внутренние) и периферийные (внешние). И те, и другие отвечают за подключение к материнской плате. Разница в том, что локальные шины отвечают за подключение к материнской плате внутренних устройств компьютера (т.е. тех, что внутри корпуса), а внешние шины отвечают за подключение периферийных устройств (которых находятся вне корпуса компьютера).
Во всей этой схеме центральным звеном является материнская плата. Именно на ней мы можем увидеть множество разъёмов. Это должно сказать нам, что материнская плата представляет собой скопление множества шин. В общем-то, её главная функция как раз и заключается в том, чтобы связывать между собой внутренние и внешние устройства.
Материнская плата это множество разъемов и габариты побольше прочих.
Различные устройства подключаются через северный и южный мосты на материнской плате. Данная концепция зарекомендовала себя как проверенная временем. И, несмотря на появление большого числа новых интерфейсов и эволюцию типоразмеров ПК, эта схема остаётся неизменной уже долгое время.
Говоря о компьютерных шинах, невозможно не упомянуть две важнейших категории — последовательные и параллельные шины. Это разделение основывается на количестве сигнальных линий, используемых в шине.
В последовательной компьютерной шине сигнальная линия одна. При этом допускается использование двух каналов для разделения потоков приёма и передачи. Чтобы не слишком усложнять описание, скажем, что в последовательной шине биты передаются один за другим (последовательно, как ни странно).
Передача информации через последовательную шину.
Читайте также: Радиус шин уаз хантер
Передаваемые биты облекаются в байт (8 бит = 1 байт). Первым делом передаётся так называемый стартовый бит. Он является противоположной полярностью состоянию незанятой линии. После этого передаются 8 бит полезной информации. После этого идёт бит чётности, а последним стоповый бит. Он говорит о том, что передача завершена.
Из описания последовательной шины может показаться, что их «ширина» составляет только один бит. Но это совсем не так. Хотя принцип устройства последовательной шины и подразумевает передачу бит за битом, ширина это шины может быть и 2 бита, и 8 бит, и так далее. При этом данные разделены на логическом уровне.
Из примеров последовательной шины очень распространенным является стандарт RS-232, применяемый, как правило, при соединении различного компьютерного и телекоммуникационного оборудования.
Параллельные шины представляют собой своего рода совокупность сигнальных линий. В параллельных шинах ширина соответствует количеству сигнальных линий. Другими словами, ширина параллельных шин соответствует количеству передаваемых битов информации. Сигнал каждой линии может принимать два значения — 0 или 1. На физическом уровне это означает, что в параллельной шине используется большее число проводов или стекловолокон, нежели в последовательной. Если последовательная и параллельные шины работают на одной и той же частоте, то параллельный канал окажется быстрее.
Для стабильной передачи сигнала параллельные каналы передачи данных обладают дополнительными контрольными сигналами и, как следствие, контроллером, который отвечает за управление процессом обмена данными. Это несколько усложняет процесс обмена данными, поскольку контроллеру требуется внешних синхронизирующий сигнал.
Из известных примеров параллельных шин можно вспомнить ISA, ATA (также известен как IDE или PATA), SCSI или PCI.
Скорее всего, читателя интересует вопрос, какой из двух подходов лучше. Как ни странно, живы оба. Причина лежит на физическом уровне.
По сути, скорость передачи данных это тактовая частота, которую надо помножить на разрядность. В параллельных шинах на скорость передачи данных влияют следующие факторы: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки и прочее. В последовательных шинах повышение частоты упирается в возможности приемопередающих цепей. Фактически, если говорить о последовательных шинах, то всё упирается в свойства используемого кабеля. На текущий момент свойств оптического кабеля хватает для передачи данных. Поэтому последовательный способ передачи данных рано сбрасывать со счетов. Тем более, если речь идёт о передачи на дальние расстояния.
Также необходимо упомянуть такие понятия, как шина адреса, шина данных и шина управления.
Шина адреса — это компьютерная шина, которая используется центральным процессором или другими устройствами, обладающими прямым доступом к памяти, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения чтения или записи.
Шина данных — это компьютерная шина, отвечающая за передачу данных между компонентами компьютера.
Шина управления — это компьютерная шина, передающая сигналы, которые сообщают устройствам, какую операцию необходимо проводить.
Напоследок о такой важной характеристике компьютерных шин как пропускная способность, которая измеряется в количестве бит в секунду (бит/с) или байт в секунду (Б/с). Скорость работы параллельных шин обычно измеряют в байтах в секунду, а последовательных — в битах в секунду.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🎦 Видео
Как ставить асимметричные #шины? #автоСкачать
Импортные шины против локализованных. В чём разница? Made in Russia - как приговор.Скачать
Что означает МАРКИРОВКА НА ШИНАХ / Значение всех цифр и букв на резинеСкачать
В чем отличие шин Pirelli и Formula? Интервью с PirelliСкачать
Левые и правые шины. Асимметричные и направленные. Разница?Скачать
Контроллер универсальной последовательной шины USBСкачать
Цифровые интерфейсы и протоколыСкачать
РАЗНИЦА РАДИАЛЬНЫХ И ДИАГОНАЛЬНЫХ ШИНСкачать
Для начинающих параллельное последовательное подключение АКБ и из за чего разбалансируютсяСкачать
Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"Скачать
Напряжение, Сопротивление, Сила тока. Проводник, РЕЗИСТОР, последовательное, параллельное соединениеСкачать
Асимметричные шины с ненаправленным рисунком. Как правильно установить автошиныСкачать
Ремонт бокового пореза шины. Шиномонтаж. Подольск, Домодедовское шоссе 25 #шиномонтаж #подольскСкачать
В чём разница между левыми и правыми шинамиСкачать
Pirelli Formula energy 195.65.16Скачать