Память для шины 500 мгц

Системное администрирование и мониторинг Linux/Windows серверов и видео CDN

Статьи по настройке и администрированию Windows/Linux систем

Видео:Плашки памяти Crucial DDR 400 взяли отметку 500 Мгц в двухканалеСкачать

Плашки памяти Crucial DDR 400 взяли отметку 500 Мгц в двухканале

Немного об оперативной памяти

Память для шины 500 мгц

Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM — DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.

Память для шины 500 мгц

Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) — используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)

    Память для шины 500 мгц

      • 100-pin DIMM — используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)

      Память для шины 500 мгц

        • 144-pin SO-DIMM — используется для SDR SDRAM (Single Data Rate … ) в портативних компьютерах

        Память для шины 500 мгц

          • 168-pin DIMM — используется для SDR SDRAM (реже для FPM/EDO DRAM в рабочих станциях/серверах

          Память для шины 500 мгц

            • 172-pin MicroDIMM — используется для DDR SDRAM (Double date rate)

            Память для шины 500 мгц

              • 184-pin DIMM — используется для DDR SDRAM

              Память для шины 500 мгц

                • 200-pin SO-DIMM — используется для DDR SDRAM и DDR2 SDRAM

                Память для шины 500 мгц
                Память для шины 500 мгц

                  • 214-pin MicroDIMM — используется для DDR2 SDRAM

                  Память для шины 500 мгц

                    • 204-pin SO-DIMM — используется для DDR3 SDRAM

                    Память для шины 500 мгц

                      • 240-pin DIMM — используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM

                      Память для шины 500 мгц
                      Память для шины 500 мгц
                      Память для шины 500 мгц

                        • 244-pin Mini-DIMM – для Mini Registered DIMM

                        Память для шины 500 мгц

                          • 256-pin SO-DIMM — используется для DDR4 SDRAM

                          Память для шины 500 мгц

                            • 284-pin DIMM — используется для DDR4 SDRAM

                            Память для шины 500 мгц

                            Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей — не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.

                            Память для шины 500 мгц

                            Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

                            Видео:НЕ покупайте эту ОЗУ | Тест дешевой китайской памятиСкачать

                            НЕ покупайте эту ОЗУ | Тест дешевой китайской памяти

                            DDR2 SDRAM

                            Название стандартаТип памятиЧастота памятиЧастота шиныПередача данных в секунду (MT/s)Пиковая скорость передачи данных
                            PC2-3200DDR2-400100 МГц200 МГц4003200 МБ/с
                            PC2-4200DDR2-533133 МГц266 МГц5334200 МБ/с
                            PC2-5300DDR2-667166 МГц333 МГц6675300 МБ/с
                            PC2-5400DDR2-675168 МГц337 МГц6755400 МБ/с
                            PC2-5600DDR2-700175 МГц350 МГц7005600 МБ/с
                            PC2-5700DDR2-711177 МГц355 МГц7115700 МБ/с
                            PC2-6000DDR2-750187 МГц375 МГц7506000 МБ/с
                            PC2-6400DDR2-800200 МГц400 МГц8006400 МБ/с
                            PC2-7100DDR2-888222 МГц444 МГц8887100 МБ/с
                            PC2-7200DDR2-900225 МГц450 МГц9007200 МБ/с
                            PC2-8000DDR2-1000250 МГц500 МГц10008000 МБ/с
                            PC2-8500DDR2-1066266 МГц533 МГц10668500 МБ/с
                            PC2-9200DDR2-1150287 МГц575 МГц11509200 МБ/с
                            PC2-9600DDR2-1200300 МГц600 МГц12009600 МБ/с

                            Видео:Как частота ОЗУ влияет на ФПС в играх? 🤨Скачать

                            Как частота ОЗУ влияет на ФПС в играх? 🤨

                            DDR3 SDRAM

                            Название стандартаТип памятиЧастота памятиЧастота шиныПередач данных в секунду(MT/s)Пиковая скорость передачи данных
                            PC3-6400DDR3-800100 МГц400 МГц8006400 МБ/с
                            PC3-8500DDR3-1066133 МГц533 МГц10668533 МБ/с
                            PC3-10600DDR3-1333166 МГц667 МГц133310667 МБ/с
                            PC3-12800DDR3-1600200 МГц800 МГц160012800 МБ/с
                            PC3-14400DDR3-1800225 МГц900 МГц180014400 МБ/с
                            PC3-16000DDR3-2000250 МГц1000 МГц200016000 МБ/с
                            PC3-17000DDR3-2133266 МГц1066 МГц213317066 МБ/с
                            PC3-19200DDR3-2400300 МГц1200 МГц240019200 МБ/с

                            В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
                            Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

                            Пропускная способность = Частота шины x ширину канала x кол-во каналов

                            Для всех DDR — количество каналов = 2 и ширина равна 64 бита.
                            Например, при использовании памяти DDR2-800 с частотой шины 400 МГц пропускная способность будет:

                            (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

                            Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) — номер детали.
                            Для модулей памяти у разных производителей она выглядит примерно так:

                            • Kingston KVR800D2N6/1G
                            • OCZ OCZ2M8001G
                            • Corsair XMS2 CM2X1024-6400C5

                            На сайте многих производителей памяти можно изучить, как читается их Part Number.

                            Kingston Part NumberDescription
                            KVR1333D3D4R9SK2/16G16GB 1333MHz DDR3 ECC Reg CL9 DIMM (Kit of 2) DR x4 w/TS

                            Читайте также: Нейтральный проводник шина медная n ноль

                            Память для шины 500 мгц

                            Так же советую почитать немного об USB портах и типах.

                            Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

                            03. Основы устройства компьютера. Память и шина. [Универсальный программист]

                            Двухканальная DDR2-800 на платформе AMD Athlon 64 X2 «AM2»

                            Оперативная память типа DDR2 известна уже довольно давно — начиная со своих первых вариантов DDR2-400 и DDR2-533, появившихся примерно 2 года назад и обладавших весьма высокими задержками (как динамическими, связанными с характеристиками самих микросхем памяти, так и системными, связанными с изначально медленными схемами таймингов — 3-3-3 и 4-4-4 соответственно), и заканчивая ее современными разновидностями, обладающими как высокими скоростями функционирования (DDR2-667, DDR2-800 и неофициальные DDR2-1000/1066), так и сравнительно низкими задержками (вплоть до схем вида 4-4-4 для DDR2-800). Тем не менее, реальный потенциал памяти данного типа в двухканальном режиме ее функционирования вплоть до сегодняшнего дня остается нераскрытым (использование сравнительно дорогой высокоскоростной памяти DDR2 в одноканальном режиме не оправдано по крайней мере экономическими причинами, т. к. гораздо более дешевая DDR400 в двухканальном режиме обладает как минимум не худшими, а зачастую — лучшими характеристиками). Причина этого заключается в том, что память типа DDR2 до сих пор поддерживалась (а фактически — предназначалась для) лишь одним классом платформ — Intel Pentium 4/Pentium D с чипсетами Intel, начиная от 915-й и заканчивая современной 975-й серией (как вариант — NVIDIA nForce 4 Intel Edition или чипсеты конкурентов, но это принципиально не меняет дело). Главное ограничение на раскрытие потенциала памяти DDR2 в этом классе платформ заключается в их традиционной «шинной» архитектуре, когда процессор связан посредством системной шины (Front-Side Bus, FSB) с северным мостом чипсета, важнейшим составляющим которого является собственно контроллер памяти, способный функционировать в двухканальном режиме. Несмотря на то что такой контроллер памяти способен обеспечить пропускную способность по своей «внутренней» шине, равную теоретической ПСП двухканальной DDR2 (от 6.4 ГБ/с для DDR2-400 до 12.8 ГБ/с для DDR2-800), реальная скорость обмена данными процессора с памятью ограничивается пропускной способностью системной шины процессора, которая функционирует на частоте 200 либо 266 МГц (для «экстремальных» вариантов процессоров). Пропускная способность последней составляет всего 6.4 либо 8.53 ГБ/с — что, как нетрудно заметить, в лучшем случае не превышает теоретическую пропускную способность двухканальной памяти DDR2-533. Исходя из этой простой математики, мы не устаем делать основной вывод о том, что даже на сегодняшний день двухканальной памяти типа DDR2-533 для платформ Intel по-прежнему хватает «за глаза». Конечно, практика показывает, что более высокоскоростная память типа DDR2-667 или DDR2-800 все же имеет преимущество и на этом классе платформ, которое заключается исключительно в снижении задержек при случайном доступе к оперативной памяти. Однако согласитесь, что постоянный случайный доступ к памяти вряд ли является типичным режимом ее функционирования, характерным для большинства реальных задач.

                            Итак, «необходимость и достаточность» памяти DDR2-533 могла бы еще долго оставаться такой — как минимум, до тех пор, пока не появились бы процессоры и чипсеты Intel, обладающие более высокой частотой системной шины (каковыми, кстати, станут грядущие процессоры Intel Core 2 (ядра Conroe/Merom/Woodcrest) и соответствующие им чипсеты). Если бы не решение конкурента, обладающее, по крайней мере «на бумаге», потенциально лучшими характеристиками обмена данными с памятью.

                            Как известно, существенным отличием процессоров/платформ класса AMD Athlon 64 (включая их двухъядерную реализацию Athlon 64 X2) является наличие интегрированного контроллера памяти (двухканального либо одноканального — в бюджетном секторе решений), функционирующего на полной частоте (равной частоте ядра процессора) и имеющего прямую шину обмена командами и данными с оперативной памятью. Последняя функционирует на частоте, максимально приближенной (именно «максимально приближенной», а не «равной», т. к. последняя получается делением частоты процессора на некую целую постоянную) к номинальной частоте памяти. При этом роль «системной шины» в привычном ее понимании играет шина HyperTransport, никак не связанная с шиной памяти и служащая для обмена данными с периферией посредством чипсета (говорить о строгом разделении последнего на северный и южный мосты здесь не приходится, поскольку отчасти функции северного моста выполняет сам процессор). Очевидно, что применение такой схемы, по крайней мере в теории, позволяет полностью «выбрать» реальную пропускную способность памяти даже при ее двухканальном подключении — обмен данными с памятью идет напрямую, минуя всевозможные «узкие места» (если, конечно, таковые не встречаются непосредственно в самом ядре процессора, о чем ниже). По нашим многочисленным исследованиям мы можем констатировать, что с нынешними процессорами AMD Athlon 64 (начиная от первой ревизии ядра («C») и заканчивая последней («E»)), интегрированный контроллер памяти которых рассчитан на использование памяти типа DDR400 (в последнем случае — и выше, вплоть до неофициальной «DDR533»), так оно и есть — наблюдаемые реально максимальные значения ПСП весьма близки к теоретическим.

                            Новое решение от AMD — двухъядерные процессоры с тем же названием Athlon 64 X2 (топовые модели — Athlon 64 FX), но ревизией ядра/контроллера памяти «F» и несколько иным процессорным разъемом «Socket AM2» в некоторой степени является принципиально новым — как уже можно было догадаться, интегрированный контроллер памяти этих процессоров теперь поддерживает память типа DDR2 (и только DDR2, начиная от DDR2-400 и пока что заканчивая DDR2-800). Пожалуй, это единственное серьезное отличие — бегло проведенные нами микроархитектурные тесты данного процессора в RightMark Memory Analyzer не выявили каких-либо заметных отличий от всех предыдущих ревизий процессоров класса AMD64 (чего не скажешь о постоянно меняющихся ревизиях ядер процессоров Intel!). Что ж, самое время посмотреть, на что способен новый контроллер памяти от AMD, сможет ли он раскрыть реальный потенциал двухканальной памяти DDR2-800. Или, перефразируя последнее предложение, «пришла ли наконец-то пора по-настоящему быстрой DDR2?» ?

                            Читайте также: Чем заделать дырку в шине от самореза

                            Конфигурации тестовых стендов

                            Тестовый стенд №1

                            • Процессор: AMD Athlon 64 X2 4000+ (ревизия ядра «F»), Socket AM2
                            • Чипсет: NVIDIA nForce 570 SLI (MCP55P)
                            • Материнская плата: MSI K9N SLI Platinum
                            • Память: 2×1024 МБ Corsair XMS2 PRO PC2-6400 (DDR2-800, тайминги 5-5-5-12)

                            Тестовый стенд №2

                            • Процессор: Intel Pentium 4 Extreme Edition 3,73 ГГц (Prescott N0, 2 МБ L2)
                            • Чипсет: Intel 975X, частота FSB 200 и 266 МГц
                            • Материнская плата: ASUS P5WD2-E Premium, версия BIOS 0404 от 03/22/2006
                            • Память: 2×512 МБ Corsair XMS2-8500 (DDR2-1066 в режиме DDR2-800, тайминги 5-5-5-18)

                            Тестовый стенд №3

                            • Процессор: AMD Athlon 64 4000+, 2.4 ГГц (rev. SH-CG, 1 МБ L2)
                            • Чипсет: NVIDIA nForce4 SLI X16
                            • Материнская плата: ASUS A8N32-SLI Deluxe, версия BIOS 0502 от 10/06/2005
                            • Память: 2×1024 МБ Corsair XMS PRO PC3500, «DDR437» (в режиме DDR400, тайминги 2-3-2-6)

                            Результаты тестирования

                            Начнем с изучения результатов тестирования новой платформы как таковой (стенд №1), а затем сопоставим их с уже имеющимися результатами тестирования как памяти типа DDR2-800 на платформе Intel (стенд №2), так и памяти типа DDR400 на нынешнем поколении платформ AMD Athlon 64 (стенд №3).

                            В настройках контроллера памяти в BIOS материнской платы MSI K9N SLI Platinum, как и для предыдущих ревизий ядер AMD64, можно задать максимальную частоту функционирования памяти (MemCLK Limit). В данном случае она, выраженная в терминах скоростной категории памяти, может принимать значения «DDR2-400», «DDR2-533», «DDR2-667» и «DDR2-800», что соответствует четырем принятым стандартам памяти типа DDR2. В очередной раз оговоримся, что речь идет именно о максимальной, но не номинальной частоте функционирования памяти, поскольку она получается путем деления частоты процессора (контроллера памяти) на некоторое целое значение. Таким образом, реальная частота шины памяти может оказаться меньшей или равной заданному пределу MemCLK Limit.

                            К сожалению, узнать реальную частоту шины памяти в том или ином случае в точности не представляется возможным. Данный параметр просто не фигурирует в конфигурационных регистрах «северного моста» процессора (в них хранится лишь вышеупомянутый предел частоты памяти), поэтому всегда вычисляется эмпирическим путем, однако логика выставления частоты шины памяти процессором может отличаться от таковой, реализованной в системных утилитах (включая наш тест RMMA). Заметим также, что переориентация интегрированного контроллера памяти AMD64 на память типа DDR2 в новой ревизии ядер «F» неизбежно повлекла за собой многочисленные изменения в параметрах конфигурационных регистров, и, таким образом, на настоящий момент как сам процессор, так и настройки его контроллера памяти определяются неверно. Так, последняя версия RMMA (3.65) утверждает, что перед нами — процессор «AMD Athlon 64 FX-39» с частотой шины памяти 100 МГц (независимо от выставленного предела частоты), а большинство значений таймингов памяти просто не определяется. С нетерпением ждем новой документации от AMD, дабы исправить это положение, а пока вернемся к нашим тестам.

                            В приведенной ниже таблице представлены результаты тестирования памяти типа DDR2-800 (тайминги выставлялись в настройках BIOS по умолчанию) во всех четырех скоростных режимах, поддерживаемых новым контроллером памяти. Для каждого из этих режимов представлена теоретическая пропускная способность памяти, рассчитанная с учетом наиболее вероятной реальной частоты шины памяти (она отличается от номинала лишь в случае DDR2-533 и составляет 250 (500) МГц), а также реально измеренные величины ПСП и задержек при псевдослучайном (случайность в пределах одной страницы памяти, прямой последовательный обход страниц) и истинно случайном обходе 32-мегабайтного блока памяти.

                            Параметр/РежимDDR2-400DDR2-533DDR2-667DDR2-800
                            Теоретическая ПСП, МБ/с64008000 *1066712800
                            Средняя ПСП на чтение, МБ/с2548295033683590
                            Средняя ПСП на запись, МБ/с2063239427592909
                            Макс. ПСП на чтение, МБ/с5213
                            (81.5%)
                            5944
                            (74.3%)
                            6590
                            (61.8%)
                            6819
                            (53.3%)
                            Макс. ПСП на запись, МБ/с5626
                            (87.9%)
                            5695
                            (71.2%)
                            5758
                            (54.0%)
                            5790
                            (45.2%)
                            Минимальная латентность псевдослучайного доступа, нс44.638.031.828.8
                            Максимальная латентность псевдослучайного доступа, нс49.442.035.131.9
                            Минимальная латентность случайного доступа ** , нс141.6117.696.385.3
                            Максимальная латентность случайного доступа ** , нс149.5123.099.588.5

                            * реальная частота памяти 250 МГц, режим «DDR2-500»
                            ** размер блока 32 МБ

                            Результаты, мягко говоря, не впечатляют. Уже в случае наименее скоростного режима DDR2-400 максимальная реальная ПСП едва превышает 5.2-5.6 ГБ/с (заметим, что она оказывается ниже при чтении данных с программной предвыборкой, нежели при записи данных методом прямого сохранения) — что явно меньше типичных 6.2-6.4 ГБ/с, наблюдаемых в нынешнем поколении платформ AMD64 с памятью типа DDR400.

                            При переходе от наименее скоростного режима DDR2-400 к более скоростным изменение частоты шины памяти явно происходит — об этом говорят все более возрастающие величины ПСП, однако сам прирост указанных величин вряд ли заслуживает похвалы. В режиме DDR2-533 ПСП при чтении данных из памяти начинает превышать ПСП при записи данных (что сохраняется и при дальнейшем увеличении частоты шины памяти), но по-прежнему не достигает значений, типичных для… DDR400. Паритет достигается примерно в области DDR2-667 — в этом режиме ПСП при чтении начинает немного превышать ПСП DDR400, но достигает лишь порядка 62% от собственного теоретического максимума. Еще меньший эффект заметен в максимально скоростном режиме — ПСП достигает лишь 6.8 ГБ/с, т. е. примерно 53% от теоретического предела. Картина выглядит более чем печально — как показали наши недавние тесты, гораздо лучших результатов можно достичь с нынешним поколением контроллеров памяти AMD64 ревизии «E», применяя нестандартную (оверклокерскую) память типа DDR533.

                            Читайте также: Регрувер своими руками из сварочного аппарата для нарезки протектора шин

                            Единственный приятный момент при переходе к высокоскоростным режимам функционирования DDR2 заключается лишь в постоянном уменьшении задержек, наиболее заметном по латентности случайного доступа к памяти (от 142 до 85 нс). Однако и этому находится достаточно прозаическое объяснение — во всех режимах использовалась одна и та же схема таймингов по умолчанию (5-5-5-12), которая в абсолютных величинах выглядит совершенно по-разному для режимов DDR2-400 и DDR2-800 (чтобы быть точным, различие составляет ровно два раза в пользу DDR2-800).

                            Сопоставим теперь полученные результаты с типичными скоростными показателями памяти типа DDR2-800 на платформах Intel и DDR400 на платформах AMD, взятыми из результатов тестирования модулей памяти Corsair XMS2 PC2-8500 (в режиме DDR2-800) и Corsair XMS 3500LLPRO (в режиме DDR400).

                            Параметр/ПлатформаDDR2-800,
                            AMD «AM2»
                            (стенд №1)
                            DDR2-800,
                            Intel P4EE
                            (стенд №2)
                            DDR400,
                            AMD64
                            (стенд №3)
                            Теоретическая ПСП, МБ/с128006400 *8533 **6400
                            Средняя ПСП на чтение, МБ/с3590561468784344
                            Средняя ПСП на запись, МБ/с2909217524152555
                            Макс. ПСП на чтение, МБ/с6819
                            (53.3%)
                            6530
                            (102.0%)
                            8527
                            (99.9%)
                            6400
                            (100.0%)
                            Макс. ПСП на запись, МБ/с5790
                            (45.2%)
                            4279
                            (66.8%)
                            5685
                            (66.6%)
                            6213
                            (97.1%)
                            Минимальная латентность псевдослучайного доступа, нс28.852.745.731.6
                            Максимальная латентность псевдослучайного доступа, нс31.961.953.235.3
                            Минимальная латентность случайного доступа *** , нс85.3105.795.462.8
                            Максимальная латентность случайного доступа *** , нс88.5130.5114.867.0

                            * ПС системной шины, частота 200.0 МГц
                            ** ПС системной шины, частота 266.7 МГц
                            *** размер блока 32 МБ

                            О сопоставлении величин ПСП, полученных в настоящем исследовании, с результатами тестирования других платформ мы уже отчасти говорили выше — даже в максимальном скоростном режиме DDR2-800 они лишь незначительно опережают типичные величины для DDR400 на текущем поколении платформ AMD. На платформе Intel, явно ограничивающей реальный потенциал DDR2-800, и то наблюдаются значительно более высокие показатели — по крайней мере, соответствующие почти 100% эффективности утилизации процессорной шины, являющейся «узким местом». Достаточно приятную картину интегрированный контроллер DDR2 показывает лишь по части задержек — они оказываются меньше по сравнению с таковыми на платформе Intel, обладающей внешним контроллером памяти (в обоих случаях величины получены при включенной аппаратной предвыборке данных), т. е. некоторое преимущество интегрированного контроллера памяти над «традиционной» схемой построения подсистемы памяти все же имеется. Задержки при псевдослучайном обходе DDR2-800 на платформе «AM2» также не уступают задержкам при псевдослучайном обходе DDR400, а по части истинно случайного доступа к памяти новый интегрированный контроллер памяти DDR2 все же несколько проигрывает своему предыдущему DDR-аналогу.

                            Вместо заключения

                            Каковы же могут быть причины наблюдаемых результатов? На наш взгляд, их как минимум две. Первая из них достаточно очевидна — это «сырость» самого интегрированного контроллера памяти DDR2, который явно «не тянет» высокоскоростные режимы вроде DDR2-800, в связи с чем большую часть времени, по всей видимости, занимается отправкой «пустых» команд NOP по шине памяти :). Вторая причина менее очевидна, к тому же, она способна объяснить лишь часть представленных фактов. Это — «узость», да и вообще ограничение схемы организации шины L1-L2 кэша процессора (двунаправленная шина, эффективная разрядность которой — всего 64 бита в каждую сторону, в противовес 256-битной шине L1-L2 кэша процессоров Intel Pentium 4/Pentium D, к тому же, обладающих инклюзивной организацией кэша, не требующей «лишнего трафика» по шине L1-L2). Ее пиковая пропускная способность — 8 байт/такт, что для процессора с тактовой частотой в 2 ГГц составляет ровно 16.0 ГБ/с (заведомо выше ПСП двухканальной DDR2-800, но уже сопоставимо с ПСП более скоростной двухканальной DDR2-1066), однако в реальности мы имеем совсем другую картину.

                            Итак, реальная ПС в области L2-кэша данных составляет всего 4 байта/такт, т. е. ровно 8.0 ГБ/с, что явно ниже, чем теоретическая ПСП двухканальной DDR2-800. Реальная пропускная способность памяти как таковой, как мы уже показали, оказывается еще ниже. Тем не менее, «узость» шины L1-L2, хотя и имеет место быть, неспособна объяснить крайне низкие значения ПСП на запись методом прямого сохранения данных (минуя иерархию кэшей процессора), которая во всех случаях ограничивается уровнем 5.6-5.7 ГБ/с (т. е. проигрывает даже предыдущему контроллеру памяти, рассчитанному на DDR400!). С чем связано последнее ограничение, пока не понятно, однако складывается впечатление, что схема записи в память через «буферы объединения записи» (write-combining buffers), реализованная еще во времена первых процессоров Athlon 64 и не претерпевшая изменений впоследствии, уже явно устарела и «не поспевает» за современными стандартами двухканальной DDR2, обладающей весьма серьезным потенциалом пропускной способности (как мы видим, она оказывается сопоставимой со скоростью внутрипроцессорных коммуникаций, а это весьма и весьма серьезно!).

                            Таким образом, увы, в очередной раз раскрыть реальный потенциал топовых моделей DDR2 (DDR2-667 и выше) не удалось, эра высокоскоростной DDR2 не настала :(. На наш взгляд, виновной на сей раз оказалась сама компания AMD, попытавшаяся привязать уже устаревающие технологии почти 5-летней давности, реализованные еще в первых процессорах Athlon 64 (вроде сравнительно узкой шины L1-L2 кэша с эксклюзивной организацией последнего) к самым современным технологиям памяти, пропускная способность которых стремительно приближается к скорости передачи данных внутри самого процессора. Оперативная память определенно перестает быть «узким местом» системы, так что производителям процессора уже стоит начинать считаться с этим фактом. Что ж, будем надеяться, что производители услышат наши слова, и в следующей ревизии «G» процессорных ядер AMD64 (или принципиально новом процессорном ядре от AMD) подобные пробелы будут устранены.

                            • Свежие записи
                              • Нужно ли менять пружины при замене амортизаторов
                              • Скрипят амортизаторы на машине что делать
                              • Из чего состоит стойка амортизатора передняя
                              • Чем стянуть пружину амортизатора без стяжек
                              • Для чего нужны амортизаторы в автомобиле


                              🎬 Видео

                              Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

                              Виды видеопамяти и сколько её нужно? Какая нужна шина?

                              Какая выгода от разгона памяти? Тест 4800, 6000, 7600 и 8000 МГц. Сравнение комплектов с XMP 7600Скачать

                              Какая выгода от разгона памяти? Тест 4800, 6000, 7600 и 8000 МГц. Сравнение комплектов с XMP 7600

                              Разные планки оперативной памяти. Можно ли совмещать в одном ПК?Скачать

                              Разные планки оперативной памяти. Можно ли совмещать в одном ПК?

                              Дешёвая VS Дорогая DDR4 оперативная память, тест в играхСкачать

                              Дешёвая VS Дорогая DDR4 оперативная память, тест в играх

                              Память DDR4 SODIMM автоматически разгоняется до частоты 3200 МГц – HyperX ImpactСкачать

                              Память DDR4 SODIMM автоматически разгоняется до частоты 3200 МГц – HyperX Impact

                              Какая частота памяти нужна играм... или тайминги?Скачать

                              Какая частота памяти нужна играм... или тайминги?

                              Почему я выбрал память Kingston FURY RenegadeСкачать

                              Почему я выбрал память Kingston FURY Renegade

                              Тайминги оперативной памятиСкачать

                              Тайминги оперативной памяти

                              Как разогнать процессор и память? Гоним по шине и множителю.Скачать

                              Как разогнать процессор и память? Гоним по шине и множителю.

                              Про оперативную памятьСкачать

                              Про оперативную память

                              как выбрать оперативную память для ноутбукаСкачать

                              как выбрать оперативную память для ноутбука

                              Как настроить оперативную память если настройки авто кривыеСкачать

                              Как настроить оперативную память если настройки авто кривые

                              3200MHzまで自動的にオーバークロックされるDDR4 SODIMMメモリ – HyperX ImpactСкачать

                              3200MHzまで自動的にオーバークロックされるDDR4 SODIMMメモリ  – HyperX Impact

                              Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

                              Влияние шин PCI-e и внутренней шины видеокарты на производительность

                              Влияние частоты оперативной памяти на производительность в играх (часть 1)Скачать

                              Влияние частоты оперативной памяти на производительность в играх (часть 1)

                              Разгон кольцевой шины и кэша L3 процессораСкачать

                              Разгон кольцевой шины и кэша L3 процессора
Поделиться или сохранить к себе:
Технарь знаток