Подачей компрессора называют oбъем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора . Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.
Объемный расход газа обычно приводится к условиям всасывания (к давлению и температуре во всасывающей линии), нормальным условиям (давление 1013,25 гПа и температура 293,15°К) или стандартным условиям (1013,25 гПа и 293,15°К).
Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.
Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)
где λ — коэффициент подачи, зависящий от многих факторов;
V T — объем описываемый поршнем за ход в одну сторону;
n — число двойных ходов поршня в минуту (с возвращением в исходное положение).
λ = λ О · λ Г · λ Т · λ Р , (3.14)
где коэффициенты:
λ О — объемный;
λ Г — герметичности;
λ Т — температурный;
λ Р — давления.
Объемный коэффициент отражает степень полноты использования объема цилиндра:
Здесь коэффициент ξ равен отношению давления в конце нагнетания к давлению в начале всасывания, а коэффициент а = V м /V Т , то есть он является относительной величиной мертвого пространства. Коэффициент m — показатель политропы.
Коэффициент герметичности λ Г это функция подачи компрессора от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичности соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98.
Температурный коэффициент λ Т отражает влияние нагрева газa при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка.
Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Ориентировочно температурный коэффициент можно найти с помощью следующего выражения:
Коэффициент давления λ Р учитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95. 0,98.
Видео:Как настроить регулятор давления воздуха на гаражном компрессоре QUATTRO ELEMENTI KM 50-380Скачать
Подача поршневого компрессора, коэффициент подачи
Подачей компрессора называют объем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора. Расход газа при нагнетании всегда меньше, чем при всасывании, за счет утечек газа через неплотности. Объемный расход газа обычно рассчитывается исходя из условий всасывания, нормальных условий (давление 1013,25 гПа и температура 293,15 °К) или стандартных условий (1013,25 гПа и 293,15 °К).
Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.
Подача компрессора с одним цилиндром одинарного действия рассчитывается по формуле:
где- коэффициент подачи, зависящий от многих факторов;
— объем воздуха, перекачиваемого поршнем за ход в одну сторону;
— число двойных ходов поршня в минуту (с возвращением в исходное положение).
Коэффициент подачи рассчитывается по формуле:
где коэффжгаенты:- объемный;
Объемный коэффициент отражает степень полноты использования объема цилиндра:
— степень сжатия компрессора;
— относительный коэффициент «мертвого» пространства.
Коэффициент герметичностивводится ввиду того, что могут быть запаздывание закрытия клапанов, негерметичность уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичность соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98.
Температурный коэффициентотражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Ориентировочно температурный коэффициент можно найти по формуле:
Коэффициент давленияучитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасы вании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95.. .0,98.
Видео:Увеличение производительности воздушного компрессора своими руками .Скачать
подача компрессора
3.10 подача компрессора: Отношение объема подаваемого воздуха ко времени.
Читайте также: Компрессор бесшумный для аквариума schego
Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .
Смотреть что такое «подача компрессора» в других словарях:
подача — 3.5 подача: Объем газа, входящий в компрессор с определенными параметрами, сжатого и доставленного при определенном давлении на выходе. Примечание Подача компрессора не включает газ, который вытекает из компрессора в процессе сжатия, а также… … Словарь-справочник терминов нормативно-технической документации
расчетная подача — 3.14 расчетная подача: Подача, соответствующая размеру компрессора. Источник: ГОСТ Р 53737 2009: Нефтяная и газовая промышленность. Поршневые компрессоры. Общие технические требования … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 53737-2009: Нефтяная и газовая промышленность. Поршневые компрессоры. Общие технические требования — Терминология ГОСТ Р 53737 2009: Нефтяная и газовая промышленность. Поршневые компрессоры. Общие технические требования оригинал документа: 3.2 активный анализ: Акустическое моделирование, при котором пульсация давления меняется благодаря работе… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 53263-2009: Техника пожарная. Установки компрессорные для наполнения сжатым воздухом баллонов дыхательных аппаратов для пожарных. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 53263 2009: Техника пожарная. Установки компрессорные для наполнения сжатым воздухом баллонов дыхательных аппаратов для пожарных. Общие технические требования. Методы испытаний оригинал документа: 3.1 компрессор: Машина для… … Словарь-справочник терминов нормативно-технической документации
Система управления запуском и розжигом авиадвигателя — Система управления запуском и розжигом ГТД служит для обеспечения перевода авиадвигателя из нерабочего состояния в установившийся режим малого газа, который характеризуется наименьшими оборотами турбины, при которых он может устойчиво работать… … Википедия
АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА — двигатель и движитель летательного аппарата, единый комплекс устройств и агрегатов, обеспечивающих силу тяги и подъемную силу для полета и ускорения летательного аппарата. Автомобиль движется благодаря трению покоя между колесом и дорогой.… … Энциклопедия Кольера
Механизм — Совокупность подвижно соединенных частей, совершающих под действием приложенных сил заданные движения Источник: ФЕРп 2001: Приложения (редакция 2009 г.). Приложения. Федеральные единичные расценки на пусконаладочные работы … Словарь-справочник терминов нормативно-технической документации
АЭРАЦИЯ — АЭРАЦИЯ, термин, в общем смысле обозначающий проветривание и насыщение атмосферным воздухом какого либо физического тела (вода, другие жидкости). Этот процесс надо понимать как двусторонний процесс диффузии (проникание): с одной стороны,… … Большая медицинская энциклопедия
система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации
ПВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые … Википедия
Видео:Как настроить КОМПРЕССОР правильноСкачать
Теоретические основы работы поршневых компрессоров
Принцип работы поршневого компрессора.
Индикаторные диаграммы рабочих циклов поршневого компрессора.
Подача поршневого компрессора, факторы, влияющие на неё.
Многоступенчатое сжатие газа.
Поршневой компрессор — машина, предназначенная для преобразования энергии газа (пара, жидкости) с помощью поршня и обеспечивающая высокие давления нагнетания (до 40 МПа и выше).
Преимущества таких компрессоров — высокие значения к. п. д. и степени повышения давления цилиндров в одной ступени, максимальное давление сжатия газа, возможность эксплуатации в широком диапазоне изменения давлений компримируемого газа, возможность построения на базе одной модели различных компрессорных схем и сохранения мощности при изменении условий эксплуатации. Важное достоинство поршневых компрессоров — незначительная чувствительность к изменению плотности компримируемого газа. В то же время динамическая неуравновешенность от возвратно-поступательного компрессора оказывается причиной повышенной металлоемкости.
Для компримирования нефтяного и природного газов, а также воздуха, в районах с развитой системой электроснабжения применяют угловые и оппозитные поршневые компрессоры с приводом от электродвигателя.
Принципиальная схема поршневого компрессора (рис. 2.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно – шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.
Рисунок 2.1 — Схема работы поршневого компрессора
Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:
1. расширение газа во вредном пространстве цилиндра компрессора (в клапанах и околоклапанном пространстве, в зазоре между крышкой цилиндра и плоскостью АА, соответствующей крайнему положению поршня);
2. всасывание (расширение и всасывание происходят при движении поршня от плоскости АА до плоскости ВВ на длине хода поршня s; при этом всасывающий клапан открывается не сразу, а лишь после того, как газ, находящийся во вредном пространстве цилиндра, расширится, и его давление станет меньше давления во всасывающей линии, в этот момент откроется клапан 3, и газ начнет поступать в цилиндр компрессора);
3. сжатие (происходит при движении поршня от плоскости ВВ до плоскости СС);
Читайте также: Смазка компрессора зил в гараже
4. нагнетание (происходит при движении поршня от плоскости СС до плоскости АА; нагнетание газа в трубопровод начинается тогда, когда давление газа в цилиндре превысит давление в нагнетательной линии, в этот момент откроется клапан 4, и газ начнет поступать в трубопровод).
Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:
— без теплообмена (адиабатический процесс); т. е. с нагревом газа при его сжатии;
— с частичным теплообменом (политропический процесс);
— с полным теплообменом (изотермический процесс) т. е. с сохранением одной и той же, постоянной при сжатии и расширении, температуры газа.
Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.
Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:
где p – давление; V – объем газа; m – показатель политропы.
При адиабатических процессах m обозначается через k и называется показателем адиабаты. Показатель адиабаты определяется как отношение удельных (или молярных) теплоемкостей газа при постоянном давлении и объеме. Для одноатомных газов k = 1,67, для двухатомных k = 1,40 – 1,41, для многоатомных k = 1,2 – 1,3. При политропических процессах показатель политропы m может принимать значение от единицы до k и быть больше k. При изотермическом процессе m = 1.
При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:
1. Отсутствуют сопротивления движению потока газа (в том числе и в клапанах).
2. Давление и температура газа во всасывающей и нагнетательной линиях постоянны.
3. Давление и температура газа в период всасывания, так же как и в период выталкивания газа из цилиндра, не меняются.
4. Мертвое (вредное) пространство в цилиндре компрессора отсутствует.
5. Нет потерь мощности на трение и нет утечек газа.
Индикаторная диаграмма идеального цикла представлена на рис. 2.2. Процесс сжатия газа поршнем характеризуют кривые 1-2. При изотермическом процессе это будет кривая 1-2′», при адиабатическом 1-2″, а при политропическом 1-2 или 1-2″. Рассматривая политропический процесс 1-2, видим, что за этот период цикла, объем газа уменьшится с V1 до V2 давление изменится от р1 до р2, а температура -от Т1 до Т2. Далее идет нагнетание газа в трубопровод 2-3. Давление и температура газа остаются в этот период неизменными (p2 и T2). Весь объем газа V2 переходит в нагнетательный трубопровод. За период 3-4 в цилиндре снижается давление до давления во всасывающем трубопроводе (p1) закрывается нагнетательный клапан и с началом движения поршня вправо открывается всасывающий клапан. Период всасывания характеризуется линией 4-1. Здесь давление и температура газа равны р1 и T1, в цилиндр поступает объем газа, равный V1.
Рисунок 2.2 – Индикаторная диаграмма идеального цикла поршневого компрессора
Рисунок 2.3 – Индикаторная диаграмма реального цикла поршневого компрессора
Рассмотрим реальный цикл работы поршневого компрессора. Процесс сжатия газа в цилиндре соответствует линии 1-2 на индикаторной диаграмме (рис. 2.3). В начальный момент сжатия относительно холодный газ получает тепло от нагретого цилиндра, вследствие чего процесс идет с подводом тепла к газу, и политропа отклоняется вправо от политропы идеального процесса (пунктирная линия). В конце процесса сжатия газа температура его повышается и становится больше температуры цилиндра и клапанов, и процесс сжатия идет с отводом тепла от газа. Политропа на этом участке отклоняется влево от политропы идеального процесса. Эти явления приводят к тому, что показатель реальной политропы процесса сжатия газа становится переменным, и расчет процесса надо вести по условному эквивалентному показателю политропы.
Понижение давления в цилиндре против давления во всасывающей линии (см. рис. 2.3, точка 1), в начале сжатия обусловлено сопротивлением потоку газа во всасывающем клапане. Повышение давления против давления в нагнетательном трубопроводе (точка 2) в конце сжатия обусловлено усилиями, затрачиваемыми на открытие нагнетательного клапана (сопротивление пружин клапана и инерция масс деталей клапана, приводимых в движение при его открытии). Процесс нагнетания соответствует линии 2-3. Повышенное, против идеального процесса, давление нагнетания обусловливается сопротивлениями потоку газа в нагнетательном клапане и подводящих каналах. Некоторая волнистость линии нагнетания обусловливается непостоянством сопротивлений потоку газа из-за изменений скоростей поршня и газа, пульсацией давления в газопроводе и вибрацией клапанных пластин.
За процессом нагнетания в реальном цилиндре идет процесс расширения газа, оставшегося в мертвом (вредном) пространстве под давлением р2» (линия 3-4). Объем вредного пространства Vм. Газ расширяется, снижая давление от р2» до р4 и увеличивая свой объем до V4. При этом поршень движется вправо. Процесс расширения заканчивается при открытии всасывающего клапана. Давление в цилиндре при этом будет ниже, чем во всасывающем трубопроводе, за счет усилий, затрачиваемых на открытие всасывающего клапана. Процесс расширения газа идет вначале с отбором тепла от сжатого газа, а затем с подводом тепла к газу, и потому показатель политропы будет не постоянен (так же как и при сжатии газа).
Читайте также: Схема установки компрессора для аквариума
За процессом расширения идет всасывание газа (линия 4-1). Давление в цилиндре при этом будет ниже давления в подводящем трубопроводе за счет сопротивления движению потока газа в клапане и каналах. Колебание давления всасывания в цилиндре обусловлено теми же явлениями, которые наблюдаются и при нагнетании газа.
Работа, затрачиваемая на сжатие газа, в реальном цикле определяется площадью индикаторной диаграммы 1-2-3-4 (см. рис. 2.3).
Подачей компрессораназывают объем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора. Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.
Объемный расход газа обычно приводится к условиям всасывания (к давлению и температуре во всасывающей линии), нормальным условиям (давление 100 кПа и температура 293°К) или стандартным условиям (100 кПа и 293°К).
Потребителя интересует обычно количество газа, подаваемого ему от компрессора, приведенное к нормальным или стандартным условиям. Иногда эту подачу называют коммерческой.
Подача компрессора с одним цилиндром одинарного действия (см. рис. 3.3)
(2.1)
где ar w:top=»1134″ w:right=»850″ w:bottom=»1134″ w:left=»1701″ w:header=»720″ w:footer=»720″ w:gutter=»0″/> «> — коэффициент подачи, зависящий от многих факторов;
— объем описываемый поршнем за ход в одну сторону;
п — число двойных ходов поршня в минуту (с возвращением в исходное положение).
(2.2)
— объемный;
— герметичности;
— температурный;
— давления.
Объемный коэффициент отражает степень полноты использования объема цилиндра. Коэффициент герметичности это функция подачи компрессора от запаздывания закрытия клапанов, негерметичности уплотнений зазора между поршнем и цилиндром, уплотнений штоков у цилиндров двойного действия, негерметичности соединений рабочих каналов. Коэффициент герметичности обычно принимается в пределах 0,95. 0,98. Температурный коэффициент отражает влияние нагрева газа при всасывании за счет теплообмена с горячими стенками цилиндра и каналов. При нагреве увеличивается объем газа, находящегося в цилиндре, и уменьшается полезный объем газа, поступающего в цилиндр из всасывающего патрубка. Температурный коэффициент зависит от степени сжатия газа, поскольку от этого зависят температура нагнетаемого газа и температура стенок каналов и цилиндра. Коэффициент давления учитывает снижение подачи компрессора за счет уменьшения давления газа в цилиндре при всасывании по сравнению с давлением во всасывающем патрубке. В результате этого снижения давления газ расширяется, и в цилиндр входит меньшее его количество. На подачу влияет уменьшение давления не в начале, а в конце периода всасывания. Коэффициент давления обычно находится в пределах 0,95…0,98.
При необходимости сжимать газ до давления, превышающего 0,4…0,7 МПа по манометру, применяют многоступенчатое сжатие, сущность которого состоит в том, что процесс сжатия газа разбивается на несколько этапов или ступеней. В каждой из этих ступеней газ сжимается до некоторого промежуточного давления и перед тем как поступать в следующую ступень, охлаждается в межступенчатом холодильнике. В последней ступени газ дожимается до конечного давления. В современных компрессорах высокого давления число ступеней сжатия достигает семи.
Причины, заставляющие применять многоступенчатое сжатие, следующие;
— выигрыш в затраченной работе;
— ограничение температуры конца сжатия;
— более высокий коэффициент подачи.
Для уменьшения работы сжатия применяется ступенчатое сжатие газа с охлаждением его в охладителях, расположенных между ступенями компрессора.
В результате охлаждения газа устраняется и другая причина, обусловливающая применение ступенчатого сжатия, это недопустимое повышение температуры газа при большой степени повышения давления одноступенчатым компрессором. Температура на этапе сжатия газа не должна достигать значений, при которых происходит изменение свойств компрессорного масла. С повышением температуры газа вязкость масла уменьшается, ухудшаются условия смазки, и увеличивается износ трущихся деталей компрессора. При достижении температур порядка 180. 200°С масло разлагается, в результате чего поверхности деталей цилиндра компрессора и нагнетательная линия покрываются нагаром. Это ухудшает охлаждение компрессора и нарушает его нормальную работу (увеличивается трение между поршневыми кольцами и цилиндром, возможны поломки колец и задиры поверхности цилиндра, ухудшается работа клапанов, возникает опасность самовозгорания и взрыва в нагнетательной линии).
1. Принцип действия поршневого компрессора.
2. Условия сжатия газа в поршневых компрессорах. Политропный процесс.
3. Идеальная индикаторная диаграмма цикла поршневого компрессора.
4. Работа на сжатие единицы массы газа в компрессоре.
5. От чего зависит температура в конце процесса сжатия в одной ступени?
6. Производительность поршневых компрессоров.
7. Объемный коэффициент подачи поршневого компрессора.
8. Принцип получения высоких давлений в поршневых компрессорах.
💥 Видео
Основная Поломка и Особенности Ремонта Китайского КомпрессораСкачать
Как использовать поршневой воздушный компрессор. Настройка компрессора. Советы по эксплуатации.Скачать
Как выбрать правильный компрессор? #лазер #чпу #zareff #гравировка #компрессор #со2 #shortsСкачать
Подготовка, настройка и запуск компрессора. Как не допустить ошибокСкачать
Регулировка давления компрессора. Настройка автоматики компрессора. Регулировка прессостатаСкачать
9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать
Аэрация пруда для начинающих. Часто совершаемая ошибка.Скачать
Устройство и принцип работы винтового компрессораСкачать
Работа винтового компрессора, его принцип действия и устройство.Скачать
Поршневой компрессорСкачать
Поршневой воздушный компрессорСкачать
Шестеренный насос - устройство, принцип работы, применениеСкачать
Компрессор Air-25: стабильная подача воздуха в любых обстоятельствахСкачать
Подробно о автоматике для компрессора \ Автоматика \ Пресостат \ ВклычательСкачать
Регулировка прессостата поршневого компрессораСкачать
Поршневой компрессорСкачать
Ремонт компрессора - замена распределителяСкачать