Подключение по шине spi

SPI (3-wire) — популярный интерфейс для последовательного обмена данными между микросхемами. Интерфейс SPI, наряду с I 2 C, относится к самым широко-используемым интерфейсам для соединения микросхем. Изначально он был придуман компанией Motorola, а в настоящее время используется в продукции многих производителей. Его наименование является аббревиатурой от ‘Serial Peripheral Bus’, что отражает его предназначение — шина для подключения внешних устройств. Шина SPI организована по принципу ‘ведущий-подчиненный’. В качестве ведущего шины обычно выступает микроконтроллер, но им также может быть программируемая логика, DSP-контроллер или специализированная ИС. Подключенные к ведущему шины внешние устройства образуют подчиненных шины. В их роли выступают различного рода микросхемы, в т.ч. запоминающие устройства (EEPROM, Flash-память, SRAM), часы реального времени (RTC), АЦП/ЦАП, цифровые потенциометры, специализированные контроллеры и др.

Главным составным блоком интерфейса SPI является обычный сдвиговый регистр, сигналы синхронизации и ввода/вывода битового потока которого и образуют интерфейсные сигналы. Таким образом, протокол SPI правильнее назвать не протоколом передачи данных, а протоколом обмена данными между двумя сдвиговыми регистрами, каждый из которых одновременно выполняет и функцию приемника, и функцию передатчика. Непременным условием передачи данных по шине SPI является генерация сигнала синхронизации шины. Этот сигнал имеет право генерировать только ведущий шины и от этого сигнала полностью зависит работа подчиненного шины.

Существует три типа подключения к шине SPI, в каждом из которых участвуют четыре сигнала (их основное и альтернативные обозначения см. в табл. 1). Самое простое подключение, в котором участвуют только две микросхемы, показано на рисунке 1. Здесь, ведущий шины передает данные по линии MOSI синхронно со сгенерированным им же сигналом SCLK, а подчиненный захватывает переданные биты данных по определенным фронтам принятого сигнала синхронизации. Одновременно с этим подчиненный отправляет свою посылку данных. Представленную схему можно упростить исключением линии MISO, если используемая подчиненная ИС не предусматривает ответную передачу данных или в ней нет потребности. Одностороннюю передачу данных можно встретить у таких микросхем как ЦАП, цифровые потенциометры, программируемые усилители и драйверы. Таким образом, рассматриваемый вариант подключения подчиненной ИС требует 3 или 4 линии связи. Чтобы подчиненная ИС принимала и передавала данные, помимо наличия сигнала синхронизации, необходимо также, чтобы линия SS была переведена в низкое состояние. В противном случае, подчиненная ИС будет неактивна. Когда используется только одна внешняя ИС, может возникнуть соблазн исключения и линии SS за счет жесткой установки низкого уровня на входе выбора подчиненной микросхемы. Такое решение крайне нежелательно и может привести к сбоям или вообще невозможности передачи данных, т.к. вход выбора микросхемы служит для перевода ИС в её исходное состояние и иногда инициирует вывод первого бита данных.

Рис. 1. Простейшее подключение к шине SPI

При необходимости подключения к шине SPI нескольких микросхем используется либо независимое (параллельное) подключение (рис. 2), либо каскадное (последовательное) (рис. 3). Независимое подключение более распространенное, т.к. достигается при использовании любых SPI-совместимых микросхем. Здесь, все сигналы, кроме выбора микросхем, соединены параллельно, а ведущий шины, переводом того или иного сигнала SS в низкое состояние, задает, с какой подчиненной ИС он будет обмениваться данными. Главным недостатком такого подключения является необходимость в дополнительных линиях для адресации подчиненных микросхем (общее число линий связи равно 3+n, где n-количество подчиненных микросхем). Каскадное включение избавлено от этого недостатка, т.к. здесь из нескольких микросхем образуется один большой сдвиговый регистр. Для этого выход передачи данных одной ИС соединяется со входом приема данных другой, как показано на рисунке 3. Входы выбора микросхем здесь соединены параллельно и, таким образом, общее число линий связи сохранено равным 4. Однако использование каскадного подключения возможно только в том случае, если его поддержка указана в документации на используемые микросхемы. Чтобы выяснить это, важно знать, что такое подключение по-английски называется ‘daisy-chaining’.

Читайте также: Шин центр в рубцовске

Рис. 2. Независимое подключение к шине SPI

Рис. 3. Каскадное подключение к шине SPI

Протокол передачи по интерфейсу SPI предельно прост и, по сути, идентичен логике работы сдвигового регистра, которая заключается в выполнении операции сдвига и, соответственно, побитного ввода и вывода данных по определенным фронтам сигнала синхронизации. Установка данных при передаче и выборка при приеме всегда выполняются по противоположным фронтам синхронизации. Это необходимо для гарантирования выборки данных после надежного их установления. Если к этому учесть, что в качестве первого фронта в цикле передачи может выступать нарастающий или падающий фронт, то всего возможно четыре варианта логики работы интерфейса SPI. Эти варианты получили название режимов SPI и описываются двумя параметрами:

  • CPOL — исходный уровень сигнала синхронизации (если CPOL=0, то линия синхронизации до начала цикла передачи и после его окончания имеет низкий уровень (т.е. первый фронт нарастающий, а последний — падающий), иначе, если CPOL=1, — высокий (т.е. первый фронт падающий, а последний — нарастающий));
  • CPHA — фаза синхронизации; от этого параметра зависит, в какой последовательности выполняется установка и выборка данных (если CPHA=0, то по переднему фронту в цикле синхронизации будет выполняться выборка данных, а затем, по заднему фронту, — установка данных; если же CPHA=1, то установка данных будет выполняться по переднему фронту в цикле синхронизации, а выборка — по заднему). Информация по режимам SPI обобщена в таблице 2.

Ведущая и подчиненная микросхемы, работающие в различных режимах SPI, являются несовместимыми, поэтому, перед выбором подчиненных микросхем важно уточнить, какие режимы поддерживаются ведущим шины. Аппаратные модули SPI, интегрированные в микроконтроллеры, в большинстве случаев поддерживают возможность выбора любого режима SPI и, поэтому, к ним возможно подключение любых подчиненных SPI-микросхем (относится только к независимому варианту подключения). Кроме того, протокол SPI в любом из режимов легко реализуется программно.

Как уже упоминалось, для стыковки микросхем не меньшей популярностью пользуется 2-проводная последовательная шина I 2 C. Ниже можно ознакомиться с преимуществами, которая дает та или иная последовательная шина.

Преимущества шины SPIПреимущества шины I2C
Предельная простота протокола передачи на физическом уровне обуславливает высокую надежность и быстродействие передачи. Предельное быстродействие шины SPI измеряется десятками мегагерц и, поэтому, она идеальна для потоковой передачи больших объемов данных и широко используется в высокоскоростных ЦАП/АЦП, драйверах светодиодных дисплеев и микросхемах памятиШина I 2 C остается двухпроводной, независимо от количества подключенной к ней микросхем.
Все линии шины SPI являются однонаправленными, что существенно упрощает решение задачи преобразования уровней и гальванической изоляции микросхемВозможность мультимастерной работы, когда к шине подключено несколько ведущих микросхем.
Простота программной реализации протокола SPI.Протокол I2C является более стандартизованным, поэтому, пользователь I2C-микросхем более защищен от проблем несовместимости выбранных компонентов.

Производные и совместимые протоколы

Протокол MICROWIRE компании National Semiconductor полностью идентичен протоколу SPI в режиме 0 (CPOL = 0, CPHA = 0).

3-проводной интерфейс компании Maxim

Отличие этого интерфейса состоит в том, что вместо полнодуплексной передачи по двум однонаправленным линиям здесь выполняется полудуплексная передача по одной двунаправленной линии DQ.

Более высокоуровневый протокол, чем SPI, позволяющий автоматизировать передачу данных без участия ЦПУ.

Кроме того, интерфейс SPI является основой для построения ряда специализированных интерфейсов, в т.ч. отладочный интерфейс JTAG и интерфейсы карт Flash-памяти, в т.ч. SD и MMC.

Читайте также: Из российских зимних шин какие шины лучше

Видео:Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч1)Скачать

Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч1)

SPI Arduino – подключение устройств к ардуино

SPI в Arduino- это один из основных протоколов для обмена данными между платой ардуино и подключенными устройствами. Вместе с I2C и UART этот протокол часто используется для многих типов периферийных устройств, поэтому знание принципов работы SPI необходимо любому инженеру-ардуинщику. В этой статье мы коротко рассмотрим основные принципы, схему взаимодействия и способ подключения SPI датчиков и экранов к Arduino.

Видео:Передача данных - шина SPIСкачать

Передача данных - шина SPI

SPI в Arduino

SPI – это широко применяемый протокол передачи данных между микроконтроллером (Master) и периферийными устройствами (Slave). В наших проекта в качестве Master чаще всего используется плата Arduino. Интерфейс SPI был придуман и использовался компанией Motorola, но со временем стал отраслевым стандартом. Основным плюсом работы с этим интерфейсом считается высокая скорость и возможность подключения нескольких устройств на одной шине данных.

Выводы и контакты SPI

Связь по интерфейсу SPI arduino происходит между несколькими устройствами, которые расположены близко друг к другу. Платы Ардуино оснащены отдельными выводами для SPI. Сопряжение происходит при помощи четырех контактов:

  • MOSI – по этой линии передается информация к Slave от Master.
  • MISO – используется для передачи информации к Master от Slave.
  • SCLK – создание тактовых импульсов для синхронной передачи данных.
  • SS – выбор ведомого устройства.

Взаимодействие SPI устройств

Взаимодействие устройств начинается, когда на выход SS подается низкий уровень сигнала.

Подключение по шине spi

Перед началом работы нужно определить:

  • С какого бита должен начинаться сдвиг – со старшего или с младшего. Регулируется порядок при помощи функции PI.setBitOrder().
  • Определить уровень, на котором должна находиться линия SCK при отсутствии тактового импульса. Регулируется функцией SPI.setDataMode().
  • Выбрать скорость передачи данных. Определяется функцией SPI.setClockDivider().

Следующим шагом будет определение, в каком режиме будет происходить передача информации. Выбор режима определяется такими показателями, как полярность и фаза тактового импульса. Если уровень низкий, записывается 0, высокий – 1. Всего существует 4 режима:

  • Режим 0 – SPI_MODE0: полярность (CPOL) 0, фаза (CPHA) 0.
  • Режим 1: полярность 0, фаза 1.
  • Режим 2:полярность 1, фаза 0.
  • Режим 3: полярность 1, фаза 1.

Изначально в Ардуино заложено, что данные передаются старшим битом вперед, но перед началом нужно уточнить это в документации. Продемонстрировать режимы можно на картинке.

Возможно два вида подключения в интерфейсе SPI: независимое и каскадное. В первом случае при подключении Master обращается к каждому Slave индивидуально, во втором случае подключение происходит по очереди, т.е. каскадно.

Видео:Подключить несколько устройств к Ардуино по шине SPIСкачать

Подключить несколько устройств к Ардуино по шине SPI

Подключение SPI к Ардуино

Плата Arduino уже содержит специальные выводы для подключения интерфейса SPI. Эти же выводы повторены в отельном разъеме ICSP. На этом разъеме отсутствует SS – изначально предусмотрено, что микроконтроллер Ардуино будет выступать в роли ведущего устройства. Если нужно использовать его в качестве ведомого, можно использовать любой цифровой вывод в качестве SS.

На данной иллюстрации представлен вариант подключения OLDE-экрана по SPI к ардуино.

Подключение по шине spi

Для каждой модели Ардуино существую свои выводы для SPI. Эти выводы:

  • Uno: MOSI соответствует вывод 11 или ICSP-4, MISO – 12 или ICSP-1, SCK – 13 или ICSP-3, SS (slave) – 10.
  • Mega1280 или Mega2560: MOSI – 51 или ICSP-4, MISO – 50 или ICSP-1, SCK – 52 или ICSP-3, SS (slave) – 53.
  • Leonardo: MOSI – ICSP-4, MISO –ICSP-1, SCK –ICSP-3.
  • Due: MOSI – ICSP-4, MISO –ICSP-1, SCK –ICSP-3, SS (master) – 4, 10, 52.

Последний контроллер Arduino Due расширяет возможности пользователя и позволяет реализовать больше задач, чем на остальных микроконтроллерах. Например, можно автоматически управлять ведомым устройством и автоматически выбирать различные конфигурации (тактовая частота, режим и другие).

Читайте также: Шины в ангарске автоквартал

Видео:AVR 38# Последовательный интерфейс SPIСкачать

AVR 38# Последовательный интерфейс SPI

Библиотека SPI Arduino

Для работы на Ардуино создана отдельная библиотека, которая реализует SPI. Перед началом кода нужно добавить #include , чтобы включить библиотеку.

  • begin() и end() – включение и выключение работы. При инициализации на выход настраиваются линии SCLK, MOSI и SS, подавая низкий уровень на SCLK, MOSI и высокий на SS. Функция end() не меняет уровни линий, она нужна для выключения блока, связанного с интерфейсом, на плате Ардуино.
  • setBitOrder(order) – установка порядка отправки битов информации (MSBFIRST – приоритет старшего бита, LSBFIRST – приоритет младшего бита).
  • setClockDivider(divider) – установка делителей тактов основной частоты. Можно поставить делители 2, 4, 8, 16, 32, 64 и 128. Записывается следующим образом – SPI_CLOCK_DIVn, где n – выбранный делитель.
  • setDataMode(mode) – выбор одного из четырех рабочих режимов.
  • transfer(value) – осуществление передачи байта от ведущего устройства и возвращение байта, который принят от ведомого устройства.
  • shiftIn(miso_pin, sclk_pin, bit_order) и shiftOut(mosi_pin, sclk_pin, order, value) – принятие и отправка данных, можно подключать к любым цифровым пинам, но перед этим нужно самостоятельно их настроить.

Видео:MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

MCP2515, контроллер CAN шины с интерфейсом SPI

Преимущества и недостатки SPI

Преимущества интерфейса SPI:

  • Возможность передавать большие данные, не ограниченные длиной в 8 бит.
  • Простота в реализации программного обеспечения.
  • Простота аппаратной реализации.
  • Выводов нужно меньше, чем для параллельных интерфейсов.
  • Только быстродействие устройств ограничивает максимальную тактовую частоту.
  • Большое количество выводов по сравнению с I2C.
  • Slave не может управлять потоком информации.
  • Отсутствие стандартного протокола обнаружения ошибок.
  • Большое количество способов реализации интерфейса.
  • Отсутствие подтверждения приема информации.

Видео:Интерфейс SPI на примере STM32. Подключение периферии - экрана и памяти.Скачать

Интерфейс SPI на примере STM32. Подключение периферии - экрана и памяти.

Пример использования SPI Ардуино в проекте с датчиком давления

Для реализации проекта нам нужны Ардуино, датчик давления макетная плата и провода. Пример подключения датчика изображен на рисунке.

Подключение по шине spi

При помощи датчика SCP1000 возможно узнавать такие параметры как давление и температура и передать эти значения через SPI.

Основные элементы скетча программы

В первую очередь в коде прописываются регистры датчика при помощи setup(). С устройства возвращаются несколько значений – одно в 19 бит для полученного давления, другое в 16 бит – для температуры. После этого происходит считывание двух температурных байтов и считывание давления в два этапа. Сначала программа берет три старших бита, затем следующие 16 бит, после чего при помощи побитового сдвига происходит объединение этих двух значений в одно. Настоящее давление – это 19-тиразрядное значение, деленное на 4.

const int PRESSURE = 0x1F; // первый этап определения давления (выявляются три старших бита)

const int PRESSURE_LSB = 0x20; // второй этап, в котором определяются 16 бит для давления

const int TEMPERATURE = 0x21; //16 бит для температуры

Для чтения данных температуры и преобразования ее в градусы Цельсия используется следующий элемент кода:

int tempData = readRegister(0x21, 2);

float realTemp = (float)tempData / 20.0; // чтобы определить реальное значение температуры в Цельсиях, нужно полученное число разделить на 20

Считывание битов давления и объединение их:

byte pressure_data_high = readRegister(0x1F, 1);

unsigned int pressure_data_low = readRegister(0x20, 2);

long pressure = ((pressure_data_high Краткие выводы о SPI

Экраны и датчики SPI часто встречаются в проектах ардуино, поэтому нужно знать, как работает этот протокол. В принципе, ничего сложного в подключении SPI устройств нет. Главное, правильно подсоединить провода и использовать методы стандартной библиотеки в нужной последовательности. Для некоторых устройств, например, SD карты или OLED — экранов, альтернатив, в принципе, не существует.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности


    💥 Видео

    arduino spiСкачать

    arduino spi

    Подключение дисплея OLED SSD1309 по шине I2CСкачать

    Подключение дисплея OLED SSD1309  по шине I2C

    Подключение нескольких устройств, датчиков по I2C (АйТуСи) шинеСкачать

    Подключение нескольких устройств, датчиков по I2C (АйТуСи) шине

    Подключение цветного дисплея 1.8 дм SPI 128х160 к KaRadio32Скачать

    Подключение цветного дисплея 1.8 дм SPI 128х160 к KaRadio32

    STM32 и 74HC595 (подключение по SPI)Скачать

    STM32 и 74HC595 (подключение по SPI)

    Лекция 307. Интерфейс SPIСкачать

    Лекция 307. Интерфейс SPI

    О шине SPI и библитоеке SPI. Arduino.Скачать

    О шине SPI и библитоеке SPI. Arduino.

    SPI шина на осциллографеСкачать

    SPI шина на осциллографе

    Сдвиговый регистр 74HC595 и загрузка данных в него, по SPI интерфейсу.Скачать

    Сдвиговый регистр 74HC595 и загрузка данных в него, по SPI интерфейсу.

    Цифровые интерфейсы и протоколыСкачать

    Цифровые интерфейсы и протоколы

    Подключение дисплея LCD12864B на ST7920 к Arduino по SPIСкачать

    Подключение дисплея LCD12864B на ST7920 к Arduino по SPI

    Программирование МК AVR. УРОК 24. Знакомство с шиной SPIСкачать

    Программирование МК AVR. УРОК 24. Знакомство с шиной SPI

    Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"Скачать

    Лекция "Интерфейсы (часть I). RS-232/422/485. SPI"

    Теория и практика UART, I2C (TWI), SPI на arduino.Скачать

    Теория и практика UART, I2C (TWI), SPI на arduino.
Поделиться или сохранить к себе:
Технарь знаток