Принципиальная схема поршневого компрессора (рис. 3.1) включает цилиндр 1, поршень 2, всасывающий 3 и нагнетательный 4 клапаны, шток 5 и кривошипно-шатунный механизм, состоящий из крейцкопфа 6, шатуна 7 и кривошипа 8.
Рис. 3.1. Схема поршневого компрессора
Рабочий процесс в поршневом компрессоре осуществляется за четыре этапа:
Расширение и сжатие газа в компрессоре связаны с изменением его температуры и являются объектом изучения технической термодинамики.
Характер изменения объема газа зависит от условий теплообмена между газом, деталями компрессора и окружающей средой. В зависимости от этого сжатие или расширение могут происходить:
Как видно из определений, адиабатический и изотермический процессы являются частными случаями политропического процесса.
Политропический процесс изменения состояния идеального газа удовлетворяет уравнению:
где р — давление; V — объем газа; m — показатель политропы.
При адиабатических процессах m обозначается через k и называется показателем адиабаты и равен 1,67 для одноатомных газов, 1,4. 1,41 для двухатомных и 1,2. 1,3 для трех- и многоатомных газов.
При изотермическом процессе m = 1.
Из условий работы поршневого компрессора видно, что процессы сжатия и расширения газа происходят в основном при политропическом процессе.
Изменение температуры газа можно определить, используя уравнение состояния идеального газа:
где R — газовая постоянная; Т — абсолютная температура газа в цилиндре в °К.
Для политропического процесса температура после сжатия равна:
где Т 2 — конечная температура газа после сжатия;Т 1 — начальная температура газа в °К.
- Индикаторная диаграмма идеального рабочего процесса компрессора
- Работа на сжатие единицы массы газа в компрессоре
- Подача поршневого компрессора, коэффициент подачи
- Мощность и коэффициент полезного действия поршневого компрессора
- Охлаждение компрессора
- Конструкции поршневых компрессоров
- Электронная библиотека
- Сжатие газа в компрессоре
- 📹 Видео
Индикаторная диаграмма идеального рабочего процесса компрессора
При рассмотрении идеального цикла поршневого компрессора принимают следующие допущения:
Работа на сжатие единицы массы газа в компрессоре
Работа идеального цикла компрессора ( L полн ) равна сумме работы сжатия газа ( L 1 ) и работы вытеснения газа в нагнетательный трубопровод ( L 2 ) за вычетом работы, обусловленной энергией газа, имевшейся у него уже во всасывающем трубопроводе ( L 3 ):
Подача поршневого компрессора, коэффициент подачи
Подачей компрессора называют oбъем или массу газа, проходящего за единицу времени по линии всасывания или линии нагнетания компрессора . Расход газа на нагнетании всегда меньше, чем на всасывании, за счет утечек газа через неплотности.
Мощность и коэффициент полезного действия поршневого компрессора
Мощность привода компрессора слагается из индикаторной мощности сжатия ( N инд ), мощности, затрачиваемой на механические потери в механизмах компрессора ( N м1 ) и передачах от привода к компрессору ( N м2 ), и мощности ( N всп ), затрачиваемой на привод вспомогательных устройств (например, насосов системы смазки).
Охлаждение компрессора
При сжатии воздуха и газов неизбежно выделяется большое количество тепла. Если это тепло будет уноситься с сжимаемым газом, то будет происходить адиабатический процесс сжатия. Чтобы сделать компрессор более экономичным, предусматривают принудительное охлаждение.
Конструкции поршневых компрессоров
На рис. 3.1 была представлена схема простейшего компрессора с одним цилиндром одинарного действия, (рабочая камера цилиндра находится с одной стороны поршня). Подробнее.
Видео:Поршневой воздушный компрессорСкачать
Электронная библиотека
Основная цель термодинамического расчета компрессора – это определение работы (мощности), которую следует затратить, чтобы получить некоторое количество газа при заданных параметрах начала и конца сжатия. Работу определяют по уравнению (9.1).
Когда процесс сжатия идет по изотерме pv = const, работа идеального «изотермического» компрессора, отнесенная к 1 кг газа, с учетом того, что
При адиабатном сжатии работа сжатия равна:
Работу «адиабатного» компрессора находят из выражения:
Пользуясь выражением (9.4), работу компрессора удобно рассчитывать с помощью hS-диаграммы.
Как адиабатный, так и изотермический процессы сжатия газа могут рассматриваться только как теоретические. В действительности процессы сжатия идут по политропе, имеющей переменный показатель. Показатель политропы зависит от интенсивности теплообмена в процессе сжатия газа в компрессоре:
· для охлаждаемого компрессора k > n > 1;
· для неохлаждаемого компрессора (центробежного, осевого) n > k.
Для политропного процесса работа сжатия равна:
Следовательно, работу «политропного» компрессора можно найти по формуле:
Среднее значение показателя политропы, как правило, определяется по параметрам газа в начале и конце процесса сжатия.
В случае охлаждаемого компрессора (рис.
lиз Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00
Видео:Поршневой компрессорСкачать
Сжатие газа в компрессоре
Объемные компрессоры – это машины, в которых процесс сжатия происходит в рабочих камерах, изменяющих свой объем периодически, попеременно сообщающихся с входом и выходом компрессора. По геометрической форме рабочих органов и способу изменения объема рабочих камер их можно разделить на поршневые, мембранные и роторные (винтовые, ротационно-пластинчатые, жидкостно-кольцевые и др.).
Лопастные компрессоры (турбокомпрессоры) – машины динамического действия, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решетками лопастей. Характерной особенностью лопастных машин является отсутствие пульсации развиваемого ими давления. К лопастным относятся осерадиальные, осевые и вихревые машины.
В этих различных по конструкции машинах осуществляются идентичные по сути процессы, поэтому знакомство с принципом их работы и особенностями протекающих в них процессов удобно начинать с поршневых компрессоров.
Одноступенчатый компрессор представляет собой цилиндр 3 с поршнем 4, перемещаемым с помощью кривошипно-шатунного механизма 5. В крышке цилиндра установлены автоматические впускной 1 и выпускной 2 клапаны. При движении поршня от верхней мертвой точки вниз в цилиндре возникает разрежение, открывается впускной клапан и происходит всасывание очередной порции газа с давлением р1 в цилиндр. Как только направление движения поршня меняется на противоположное, впускной клапан закрывается и начинается сжатие газа. Когда давление газа в цилиндре достигнет определенной величины р2, открывается выпускной клапан и сжатый газ выталкивается потребителю.
Идеальным называют компрессор, способный (в отличие от реального случая) вытолкнуть весь сжатый в цилиндре газ. Рассмотрим индикаторную диаграмму идеального компрессора:
Здесь линия 1–2 изображает процесс сжатия газа в цилиндре, линия 2–3 – выталкивание сжатого газа, а линия 4–1 – всасывание газа в цилиндр. Отметим, что во время всасывания и выталкивания состояния газа не меняются (параметры р и Т газа остаются неизменными), меняется лишь масса газа в цилиндре, т.е. происходит перемещение газа без изменения его внутренней энергии. Работа на компрессирование 1 кг газа lК определяется заштрихованной площадью индикаторной диаграммы. Количество работы зависит от характера процесса сжатия.
Величину lК определим как сумму соответствующих работ:
где составляющие рассчитывают по известным формулам:
Тогда в результате суммирования получим
Как видим, работа на привод компрессора в n раз больше работы сжатия.
Обычно полученную формулу трансформируют к виду
из чего ясно, что при n > 1,0 и p2 / p1 > 1,0 lК всегда отрицательна. Абсолютное значение этой работы называют работой на привод компрессора lПР, причем lПР = –lК.
Одной из основных характеристик компрессора является степень повышения давления в нем: b = p2 / p1. Обычно 2 £ b £ 6. При b 6 возникают проблемы с обеспечением прочности деталей компрессора, кроме того, повышенные температуры в конце сжатия приводят к закоксовыванию смазки и ускоренному износу.
Если массовая производительность компрессора М, кг/с, то теоретическая мощность на привод компрессора
Для получения высокого давления применяют многоступенчатое сжатие, направляя сжатый в первой ступени газ во второй цилиндр (вторую ступень), третью ступень и т.д. Обычно газ, сжатый в очередной ступени, направляется сначала в промежуточный холодильник, где его охлаждают до первоначальной температуры, и только после этого он засасывается в цилиндр следующей ступени:
Схема многоступенчатого компрессора
Гидравлическое сопротивление холодильника делается по возможности минимальным, поэтому процесс охлаждения газа в нем можно считать изобарным. Индикаторная диаграмма многоступенчатого идеального компрессора выглядит следующим образом:
Отметим, что благодаря промежуточному охлаждению температура в точках начала процессов сжатия в каждой ступени одинакова (точки 1, 3, 5). Обычно одинаковыми принимаются и величины β в каждой ступени, поскольку это и есть оптимальное соотношение. При этом число ступеней Z рассчитывают, используя формулу
и задавая последовательно значения Z = 2, 3, 4 . до тех пор, пока значение β впервые станет меньше 6,0 для поршневых машин и 1,2. 1,4 – для турбокомпрессоров.
Диаграмма T–s процессов сжатия и охлаждения в многоступенчатом компрессоре имеет следующий вид:
Для оценки степени совершенства компрессоров используют изотермический к.п.д.
где lИЗ – работа на привод компрессора при изотермическом сжатии в цилиндре; lПР – то же, при политропном сжатии.
Расчет количества теплоты, отведенной в цилиндре и холодильнике, проводят по известным формулам:
а работу на привод многоступенчатого компрессора находят умножением работы на привод одной ступени lПР1 на число ступеней Z:
Цикл реального компрессора обладает рядом особенностей. Полностью вытолкнуть весь газ после сжатия его в цилиндре в действительности не удается, поскольку всегда имеется вредный, или мертвый, объем (например, в клапанной коробке), в котором остается некоторая часть сжатого газа. При ходе поршня к нижней мертвой точке закрывается выпускной клапан и происходит сначала расширение остаточного газа до давления р, несколько меньшего р1, и только потом начинается всасывание очередной порции газа.
Комментарий к слайду: В осевом компрессоре поток рабочего тела, как правило, воздуха, движется условно вдоль оси вращения ротора компрессора.
Такой компрессор состоит из чередующихся подвижных лопаточных решеток ротора, состоящих из лопаток, закрепленных на валу и именуемых рабочими колесами, и неподвижных лопаточных решеток статора, именуемых направляющими аппаратами. Совокупность, состоящая из одного рабочего колеса и одного направляющего аппарата, именуется ступенью.
Рассмотрим индикаторную диаграмму реального компрессора:
Здесь 1–2 – сжатие газа в цилиндре, 3–2 – выталкивание, 3–4 – обратное расширение и 4–1 – всасывание. В отличие от идеальной машины здесь за цикл всасывается гораздо меньший объем газа. При этом в начале всасывания в цилиндре находится остаточный газ, температура Т4 которого определяется величиной показателя политропы обратного расширения n2, которая, как правило, всегда меньше величины показателя политропы сжатия n1:
Температура в начале сжатия определится теперь как температура после смешивания массы остаточного газа mОСТ с температурой Т4 и массы засасываемого газа mВС с температурой TВС.
Основными характеристиками цикла являются:
— степень повышения давления b = p2 / p1;
— относительная величина мертвого пространства α = VBР / Vh;
— изменение температуры в процессе выталкивания DT2-3;
Расчет цикла ведут методом последовательных приближений, при этом последовательно используют следующие формулы, позволяющие рассчитать параметры всех характерных точек:
где Т1 в первом приближении принимают равной ТВС.
Теперь можно рассчитать температуру t1 во втором приближении, считая, что средние теплоемкости газа одинаковы:
Далее повторяют все предыдущие расчеты и прекращают итерации, когда последующее значение t1 станет практически совпадать с предыдущим. Процесс итераций быстро сходится, и после двух-трех приближений переходят к расчету характеристик каждого из процессов (работы l1-2, l2-3, l3-4, l4-1 и количества теплоты q1-2, q2-3, q3-4, q4-1) и цикла в целом: lПР, hИЗ, hОБ и т.п.
📹 Видео
Какой компрессор лучше? Какой компрессор выбрать для гаража?Скачать
Устройство и принцип работы винтового компрессораСкачать
Отличие мембранных компрессоров для пруда от поршневыхСкачать
НИКОГДА НЕ ПОКУПАЙТЕ КОМПРЕССОР НЕ ПОСМОТРЕВ ЭТО ВИДЕОСкачать
Поршневой компрессорСкачать
GE Reciprocating Compressors / Поршневые компрессоры GEСкачать
Какой компрессор лучше? Что нужно знать о компрессоре для гаража? Какой компрессор для покраски автоСкачать
ПОРШНЕВЫЕ КОМПРЕССОРЫ КЕДРСкачать
Все о компрессорахСкачать
Поршневые компрессоры на 220В: Remeza LB30A и Airrus H42 (тест на время до отключения)Скачать
Поршневые компрессоры REMEZA | Видео для бизнесаСкачать
Как выбрать компрессор для гаража или строительства?Скачать
Компрессор поршневой 2ВМ4Скачать
Поршневой компрессор не подходит. ⚡Нужен винтовой!Скачать
Какой компрессор лучше: безмасляный, ременный или коаксиальныйСкачать
Поршневой компрессор обзор особенности, как пользоваться, для чегоСкачать
Какой компрессор лучше? Достоинства, недостатки, сравнение компрессоров.Скачать