Процессор архитектура адреса шин

Шиной (Bus) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом. На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Процессор архитектура адреса шин

Шины в ПК различаются по своему функциональному назначению:

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к CPU и обратно (см. также рис. 1);
  • шина кэш-памяти предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная памятьRAM. При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х ) или четыре (режим 4 х ) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Читайте также: Шины 15 радиус зимние для фольксваген поло

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2. Характеристики шин ввода/вывода

ШинаРазрядность, битТактовая частота, МГцПропускная способность, Мбайт/с
ISA 8-разрядная088,330008,33
ISA 16-разрядная168,330016,6
EISA328,330033,3
VLB32330132,3
PCI32330132,3
PCI 2.1 64-разрядная64660528,3
AGP (1 x )32660262,6
AGP (2 x )3266х20528,3
AGP (4 x )3266х21056,6

Шина VESA, или VLB, предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом, или концентратором, с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Собственная платформа. Часть 0.1 Теория. Немного о процессорах

Здравствуй, мир! Сегодня у нас серия статьей для людей со средними знаниями о работе процессора в которой мы будем разбираться с процессорными архитектурами (у меня спелл чекер ругается на слово Архитектурами/Архитектур, надеюсь я пишу слово правильно), создавать собственную архитектуру процессора и многое другое.

Процессор архитектура адреса шин

Принимаются любые замечания!

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Немного про архитектуру процессора

Исторически сложилось, что существуют много процессоров и много архитектур. Но многие архитектуры имеют схожести. Специально для этого появились «Группы» архитектур типа RISC, CISC, MISC, OISC (URISC). Кроме того они могут иметь разные архитектуры адресации памяти (фон Неймана, Гарвард). У каждого процессора есть своя архитектура. Например большинство современных архитектур это RISC (ARM, MIPS, OpenRISC, RISC-V, AVR, PIC** и т.д.), но есть архитектуры которые выиграли просто за счет других факторов (Например удобство/цена/популярность/etc) Среди которых x86, x86-64 (Стоит отметить, что x86-64 и x86 в последних процессорах используют микрокод и внутри них стоит RISC ядро), M68K. В чем же их отличие?

Reduced Instruction Set Computer — Архитектура с уменьшенным временем выполнения инструкций (из расшифровка RISC можно подумать, что это уменьшенное количество инструкций, но это не так). Данное направления развилось в итоге после того, как оказалось, что большинство компиляторов того времени не использовали все инструкции и разработчики процессоров решили получить больше производительности использую Конвейеры. В целом RISC является золотой серединой между всеми архитектурами.

Яркие примеры данной архитектуры: ARM, MIPS, OpenRISC, RISC-V

Что такое TTA? ТТА это Архитектура на основе всего одной инструкции перемещения из одного адреса памяти в другую. Данный вариант усложняет работу компилятора зато дает большую производительность. У данной архитектуры есть единственный недостаток: Сильная зависимость от шины данных. Именно это и стало причиной ее меньшей популярности. Надо отметить что TTA является разновидностью OISC.

Читайте также: Размер шин инфинити qx80 р22

Яркие примеры: MOVE Project

Видео:Системная шина процессораСкачать

Системная шина процессора

OISC (URISC)?

One Instruction Set Computer — Архитектура с единственной инструкцией. Например SUBLEQ. Такие архитектуры часто имеют вид: Сделать действие и в зависимости от результата сделать прыжок или продолжить исполнение. Зачастую ее реализация достаточно простая, производительность маленькая, при этом снова ограничение шиной данных.

Яркие примеры: BitBitJump, ByteByteJump, SUBLEQ тысячи их!

CISC — Complex Instruction Set Computer — ее особенность в увеличенных количествах действий за инструкцию. Таким образом можно было теоретически увеличить производительность программ за счет увеличения сложности компилятора. Но по факту у CISC плохо были реализованы некоторые инструкции т.к. они редко использовались, и повышение производительности не было достигнуто. Особенностью этой группы является еще ОГРОМНАЯ Разница между архитектурами. И несмотря на названия были архитектуры с маленьким количеством инструкций.

Видео:04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]Скачать

04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]

Адресация памяти

Видео:Принцип работы процессора на уровне ядраСкачать

Принцип работы процессора на уровне ядра

Архитектура фон Неймана

Особенностью таких архитектур была общая шина данных и инструкций. Большинство современных архитектур это программный фон Нейман, однако никто не запрещает делать аппаратный Гарвард. У данной архитектуры большим недостатком является большое зависимости производительности процессора от шины. (Что ограничивает общую производительность процессора).

Видео:Как работает процессор: частоты, шины и т.д.Скачать

Как работает процессор: частоты, шины и т.д.

Архитектура гарварда

Особенность этой архитектуры является отдельная шина данных и инструкций. Дает большую производительность чем фон Нейман за счет возможности за один такт использовать обе шины (читать из шины инструкций и одновременно записывать в шинну данных), но осложняет архитектуру и имеет некоторые ограничения. В основном используется в микроконтроллерах.

Видео:КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

Особенности процессоров

Видео:АПС Л14. ШиныСкачать

АПС Л14. Шины

Конвейеры

Что такое конвейеры? Если сказать очень глупым языком это несколько параллельных действий за один такт. Это очень грубо, но при этом отображает суть. Конвейеры за счет усложнения архитектуры позволяют поднять производительность. Например конвейер позволяет прочитать инструкцию, исполнить предыдущую и записать в шину данных одновременно.

На картинке более понятно, не правда?

IF — получение инструкции,
ID — расшифровка инструкции,
EX — выполнение,
MEM — доступ к памяти,
WB — запись в регистр.

Вроде все просто? А вот и нет! Проблема в том что например прыжок (jmp/branch/etc) заставляют конвейер начать исполнение (получение след. инструкции) заново таким образом вызывая задержку в 2-4 такта перед исполнение следующей инструкции.

Видео:АПС Л19. ШиныСкачать

АПС Л19. Шины

Расширение существующих архитектур

Достаточно популярной техникой является добавление в уже существующую архитектуру больше инструкций через расширения. Ярким примером является SSE под x86. Этим же грешит ARM и MIPS и практически все. Почему? Потому что нельзя создать унивирсальную архитектуру.

Другим вариантом является использование других архитектур для уменьшения размера инструкций.
Яркий пример: ARM со своим Thumb, MIPS с MIPS16.

Видео:Архитектура x86. Уверены, что знаете свой домашний компьютер?Скачать

Архитектура x86. Уверены, что знаете свой домашний компьютер?

Техники применяемые в GPU

В видеокартах часто встречается много ядер и из-за этой особенности появилась потребность в дополнительных решениях. Если конвейеры можно встретить даже в микроконтроллерах то решения используемых в GPU встречаются редко. Например Masked Execution (Встречается в инструкциях ARM, но не в Thumb-I/II). Еще есть другие особенность: это уклон в сторону Floating Number (Числа с плавающей запятой), Уменьшение производительности в противовес большего количества ядер и т.д.

Видео:АПС Л19. ШиныСкачать

АПС Л19.  Шины

Masked Execution

Данный режим отличается от классических тем, что инструкции исполняются последовательно без использования прыжков. В инструкции хранится некоторое количество информации о том при каких условия эта инструкция будет исполнена и если условие не соблюдено то инструкция пропускается.

Ответ прост! Что бы не нагружать шину инструкций. Например в видеокартах можно загрузить тысячи ядер одной инструкцией. А если бы использовалась система прыжков то пришлось бы для каждого ядра ждать инструкцию из медленной памяти. Кеш частично решает проблему, но все еще не решает проблему полностью.

Видео:Архитектуры процессоров | RISC-V, Zhaoxin, Loongson и ЭльбрусСкачать

Архитектуры процессоров | RISC-V, Zhaoxin, Loongson и Эльбрус

Прочее

Здесь мы будем описывать несколько техник используемых в центральный процессорах и микроконтроллерах.

Видео:Шина компьютера, оперативная память, процессор и мостыСкачать

Шина компьютера, оперативная память, процессор и мосты

Прерывания

Процессор архитектура адреса шин

Прерывания это техника при которой исполняемый в данный момент код приостанавливается для выполнения какой-то другой задачи при каких-то условиях. Например при доступе в несуществующий участок памяти вызывается HardFault или MemoryFault прерывания или исключения. Или например если таймер отсчитал до нуля. Это позволяет не бездействовать пока нужно ждать какое-то событие.

Какие недостатки? Вызов прерывания это несколько тактов простоя и несколько при возврате из прерывания. Так же несколько инструкций в начале кода будет занято инструкциями для Таблицы прерываний.

Видео:Архитектура ЭВМ. Лекция 3: Кодирование и тип инструкций процессора.Скачать

Архитектура ЭВМ. Лекция 3: Кодирование и тип инструкций процессора.

Exception (исключения)

Но кроме прерываний еще существуют исключений которые возникают например при деления на ноль. Зачастую его совмещают с прерываниями и системными вызовами, как например в MIPS. Исключения не всегда присутствуют в процессоре например как в AVR или младших PIC

Видео:Трехшинная архитектура ЭВМСкачать

Трехшинная архитектура ЭВМ

Системные вызовы

Системные вызовы используется в Операционных системах для того, чтобы программы могли общаться с операционной системой например просить ОС прочитать файл. Очень похоже на прерывания. Аналогично исключениям не всегда присутствуют в процессоре

Видео:Введение в архитектуру компьютеровСкачать

Введение в архитектуру компьютеров

Контроллеры доступа в память и прочие методы сдерживания программ

Здесь описываются методы запрета доступа приложений к аппаратуре напрямую.

Видео:Лекция 1 | Архитектура ЭВМ и основы ОС | Кирилл Кринкин | CSC | ЛекториумСкачать

Лекция 1 | Архитектура ЭВМ и основы ОС | Кирилл Кринкин | CSC | Лекториум

Привилегированный режим

Это режим в котором стартует процессор. В таком режиме программа или ОС имеют полный доступ к памяти в обход MMU/MPU. Все программы запускаются в непривилегированном режиме во избежания прямого доступа к аппаратным подсистемам программ для этого не предназначенных. Например вредоносным программам. В Windows ее часто называют Ring-0, а в *nix — системным. Не стоит путать Привелигированный пользователь и Привилегированный режим ибо в руте вы все еще не можете иметь прямой доступ к аппаратуре (можно загрузить системный модуль который позволит это сделать, но об этом чуть позже ?

Видео:Архитектура MIPSСкачать

Архитектура MIPS

MPU и MMU

MPU и MMU используется в современных системах чтобы изолировать несколько приложений. НО если MMU позволяет «передвинуть» память то MPU позволяет только блокировать доступ к памяти/запуск кода в памяти.

Видео:Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?Скачать

Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?

PIC (PIE)

Что такое PIE? (PIC не использую для избежания путаницы с МК PIC). PIE это техника благодаря которой компилятор генерирует код который будет работать в любом месте в памяти. Эта техника в совмещении с MPU позволяет компилировать высокие языки программирования которые будут работать и с MPU.

Популярная техника SIMD используется для того, что бы за один такт выполнять несколько действий над несколькими регистрами. Иногда бывают в качестве дополнений к основной архитектуре, например, как в MIPS, ARM со своими NEON/VFP/etc, x86 со своим SSE2.

Читайте также: Чернитель шин для пластика салона

Видео:Архитектура микропроцессора 8085Скачать

Архитектура микропроцессора 8085

Reposition for Optimization

Это техника Используется для оптимизации кода, генерируемого компилятором, с помощью пересортировки инструкций, увеличивая производительность процессора. Это позволяет использовать конвейер на полную.

Status register

Что такое регистр статуса? Это регистр который хранит состояние процессора. Например находится ли процессор в привилегированном режиме, чем закончилась операция последнего сравнения.

Используется в связке с Masked Execution. Некоторые разработчики специально исключают регистр статуса ибо он может являться узким местом как поступили в MIPS.

mov vs $0 reg

В MIPS нет отдельной инструкции загрузки константы в память, но есть инструкция addi и ori которая позволяет в связке с нулевым регистром ($0) эмулировать работу загрузки константы в регистр. В других архитектурах она присутствует. Я затронул эту тему, потому что она пригодиться нам в статьях с практикой.

Rd, Rs vs Rd, rs, rt

Идут множество споров насчет того сколько должно быть операндов в арифметических инструкциях. Например в MIPS используется вариант с 3-мя регистрами. 2 операнда, 1 регистр записи. С другой стороны, использование двух операндов позволяет сократить код за счет уменьшения размера инструкции. Пример совмещения является MIPS16 в MIPS и Thumb-I в ARM. В плане производительности они практически идентичны (Если исключать размер инструкции как фактор).

Endianness

Процессор архитектура адреса шин

Порядок байт. Возможно вам знакомы Выражения Big-Endian и Little-Endian. Они описывают порядок байт в инструкциях/в регистрах/в памяти/etc. Здесь думаю все просто :). Есть процессоры которые совмещают режимы, как MIPS, или которые используют одну систему команд, но имеют разный порядок байт, например ARM.

Битность процессора

Итак, что такое битность процессора? Многие считают, что это битность шины данных, но это не так. Почему? В ранние переоды микроконтроллеров и микропроцессоров шина могла быть, например, 4-х битной, но передавала пакетами по 8 бит. Для программы казалось, что это 8-и битный режим, но это была иллюзия, как и сейчас. Например, в ARM SoC-ах часто применяют 128-и битную шину данных или инструкций.

Сопроцессоры

Что такое сопроцессоры? Сопроцессоры являются элементами процессора или внешней микросхемой. Они позволяют исполнять инструкции, которые слишком громоздки для основной части процессора. Как яркий пример, сопроцессоры в MIPS для деления и умножения. Или например 387 для 80386, который добавлял поддержку чисел с плавающей запятой. А в MIPS сопроцессоров было много и они выполняли свои роли: контролировали прерывания, исключения и системные вызовы. Часто сопроцессоры имеют собственные инструкции и на системах, где этих инструкций нет, (пример ARM) эмулируют ее через Trap-ы (ловушки?). Несмотря на костыльность и маленькую производительность, они часто являются единственным выбором в микроконтроллерах.

Атомарность операций

Атомартность операций обеспечивает потоко-независимое исполнение за счет инструкций, которые выполняют несколько действий за один псевдотакт.

Вариант другого решения атомарность переферии. Например для установки ножки в STM32 в высокое и низкое состояние используется разные регистры, что позволяет иметь атомарность на уровне переферии.

Процессор архитектура адреса шин

Вы, навярняка, слышали о L1, L2, L3 и регистрах. Если коротко, процессор анализирует часть кода, чтобы предугадать прыжки и доступ в память и зараннее просит кеш получить эти данные из памяти. Кеш зачастую бывает прозрачным для программы, но бывают и исключения из этого правила. Например, в программных ядрах в ПЛИС используется програмный кеш.

И вы кончено слышали о такой вещи, как Cache Miss или промах по кешу. Это операция которая не была предусмотрена процессорам или процессор не успел закешировать эту часть памяти. Что достаточно часто является проблемой замедления доступа к памяти. Промах проходит незаметно для программы, но не останутся незаметными просадки в производительности.Так же переключения контекстов например при прерываниях тоже заставляет страдать кеш ибо небольшой код сбивает конвейер и кеш для собственных нужд.

Shadow Registers

В современных процессорах часто используется техника теневых регистров. Они позволяют переключаться между прерываниями и пользовательским кодом практически без задержек связанных с сохранением регистров.

Stack

Стек? Я видел Стек в .NET и в Java! Что же, Вы частично правы. Стек существует, но он никогда не был апаратным в большинства процессорах. Например в MIPS его по просту нет. Спросите КАК ТАК ТО?! Ответ прост. Стек это просто доступ к памяти которую не нужно резервировать (очень грубое определение). Стек используется для вызова функций, передачи аргументов, сохранения регистров для того чтобы востановить их после выполнения функции и т.д.

Спросите тогда что такое куча (Heap)? Куча это память размером намного больше чем стек (Стек обычно

1MB). В хипе храниться все глобальное. Например все указатели полученные с помощю Malloc указывают на часть куча. А указатели хранятся в стеке или в регистрах. С помощью инструкций загрузки данных относительно регистра можно ускорить работу стека и других доступов к памяти по типу стека, поскольку не нужно постоянно использовать операции PUSH/POP, INC/DEC или ADDI, SUBI (добавить константу), чтобы получить данные глубже по стеку, а можно просто использовать доступ относительно стека с отрицательным смещением.

Регистры

Не буду описывать регистры слишком подробно. Это мы затронем в практической статье.

В x86 регистров достаточно мало. В MIPS используется увеличенное количество регистров, а именно 31 ($0 имеет значение всегда равное нулю). В процессоре университета Беркли использовались регистровые окна, которые жестки ограничивали вложенность функций, при этом имея лучшую производительность. В других же, таких как AVR, ограничили использование регистров. Для примера: три 16-битных можно трактовать как шесть восьмибитных, где первые 16ть недоступны при некоторых операциях. Я считаю, что лучший метод был выбран MIPS-ом. Это мое сугубо личное мнение.

Выравнивание

Что такое выравнивание? Оставлю-ка я этот вопрос вам ?

Конец

Это конец первой главы нулевой части. Вся серия будет крутиться вокруг темы создания собственного процессора. Собственной операционной системы. Собственного ассемблера. Собственного компилятора и много чего другого.

Нулевые части будут посвящены теории. Я сомневаюсь что доведу всю серию до победного конца, но попытка не пытка! )

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле
    • Правообладателям
    • Политика конфиденциальности

    Автоподбор © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер

Поделиться или сохранить к себе:
Технарь знаток