Процессор с адресной шиной 32

Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.

Для реализации этого взаимодействия все устройства компьютера связаны между собой и с процессором через шины. Шина — это общий путь, по которому информация передается от одного компонента к другому. В этой статье мы рассмотрим основные шины компьютера, их типы, а также для соединения каких устройств они используются и зачем это нужно.

Видео:На что способны 32 и 64-битные мобильные процессорыСкачать

На что способны 32 и 64-битные мобильные процессоры

Что такое шина компьютера

Как я уже сказал — шина — это устройство, которое позволяет связать между собой несколько компонентов компьютера. Но к одной шине могут быть подключены несколько устройств и у каждой шины есть свой набор слотов для подключения кабелей или карт.

Фактически, шина — это набор электрических проводов, собранных в пучок, среди них есть провода питания, а также сигнальные провода для передачи данных. Шины также могут быть сделаны не в виде внешних проводов, а вмонтированы в схему материнской платы.

По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Виды системных шин

Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:

  • Шины данных — все шины, которые используются для передачи данных между процессором компьютера и периферией. Для передачи могут использоваться как последовательный, так и параллельный методы, можно передавать от одного до восьми бит за один раз. По размеру данных, которые можно передать за один раз такие шины делятся на 8, 16, 32 и даже 64 битные;
  • Адресные шины — связаны с определенными участками процессора и позволяют записывать и читать данные из оперативной памяти;
  • Шины питания — эти шины питают электричеством различные, подключенные к ним устройства;
  • Шина таймера — эта шина передает системный тактовый сигнал для синхронизации периферийных устройств, подключенных к компьютеру;
  • Шина расширений — позволяет подключать дополнительные компоненты, такие как звуковые или ТВ карты;

В то же время, все шины можно разделить на два типа. Это системные шины или внутренние шины компьютера, с помощью которых процессор соединяется с основными компонентами компьютера на материнской плате, такими как память. Второй вид — это шины ввода/вывода, которые предназначены для подключения различных периферийных устройств. Эти шины подключаются к системной шине через мост, который реализован в виде микросхем процессора.

Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.

Вот наиболее распространенные типы шин в компьютере для расширений:

  • ISA — Industry Standard Architecture;
  • EISA — Extended Industry Standard Architecture;
  • MCA — Micro Channel Architecture;
  • VESA — Video Electronics Standards Association;
  • PCI — Peripheral Component Interconnect;
  • PCI-E — Peripheral Component Interconnect Express;
  • PCMCIA — Personal Computer Memory Card Industry Association (также известна как PC bus);
  • AGP — Accelerated Graphics Port;
  • SCSI — Small Computer Systems Interface.

А теперь давайте более подробно разберем все эти шины персональных компьютеров.

Шина ISA

Процессор с адресной шиной 32

Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.

Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.

Из других усовершенствований этой шины можно отметить использование 24 адресных линий, что позволяло адресовать 16 мегабайт памяти. Эта шина имела обратную совместимость с 8 битным вариантом, поэтому здесь можно было использовать все старые карты. Первая версия шины работала на частоте процессора — 4,77 МГц, во второй реализации частота была увеличена до 8 МГц.

Шина MCA

Процессор с адресной шиной 32

Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.

Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.

Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.

Шина EISA

Процессор с адресной шиной 32

Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.

Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.

Шина VESA

Процессор с адресной шиной 32

Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.

Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.

Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.

Шина PCI

Процессор с адресной шиной 32

Peripheral Component Interconnect (PCI) — это самая новая разработка в области шин расширений. Она является текущем стандартом для карт расширений персональных компьютеров. Intel разработала эту технологию в 1993 году для процессора Pentium. С помощью этой шины соединяется процессор с памятью и другими периферийными устройствами.

PCI поддерживает передачу 32 и 64 разрядных данных, количество передаваемых данных равно разрядности процессора, 32 битный процессор будет использовать 32 битную шину, а 64 битный — 64 битную. Работает шина на частоте 33 МГц.

В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.

Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.

Шина AGP

Процессор с адресной шиной 32

Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.

AGP использует оперативную память компьютера для хранения 3D изображений. По сути, это дает видеокарте неограниченный объем видеопамяти. Чтобы ускорить передачу данных Intel разработала AGP как прямой путь передачи данных в память. Диапазон скоростей передачи — 264 Мбит до 1,5 Гбит.

PCI-Express

Процессор с адресной шиной 32

Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.

Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.

PC Card

Процессор с адресной шиной 32

Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.

Шина SCSI

Процессор с адресной шиной 32

Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.

Читайте также: Какие шины лучше китай или корея

Шина USB

Процессор с адресной шиной 32

Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.

USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.

Более новая спецификация — USB 2.0 появилась в 2002 году. Скорость передачи данных выросла до 480 Мбит/сек, а это в 40 раз быстрее чем раньше.

USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.

Видео:Системная шина процессораСкачать

Системная шина процессора

Выводы

В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.

На завершение небольшое видео про шины и интерфейсы компьютера:

Видео:Опыт эксплуатации AMD Threadripper 2-го и 1-го поколения и тест 2950X vs 1950XСкачать

Опыт эксплуатации AMD Threadripper 2-го и 1-го поколения и тест 2950X vs 1950X

Процессор с адресной шиной 32

Адрес этой статьи в Интернете: http://www.thg.ru/cpu/intel_cpu_history/

Пятнадцать процессоров Intel x86, вошедших в историю

8086: первый процессор для ПК

Процессор с адресной шиной 32

8086 стал первым процессором x86 — Intel к тому времени уже выпустила модели 4004, 8008, 8080 и 8085. Этот 16-битный процессор мог работать с 1 Мбайт памяти по внешней 20-битной адресной шине. Тактовая частота, выбранная IBM (4,77 МГц) была довольно низкой, и к концу своей карьеры процессор работал на 10 МГц.

Первые ПК использовали производную процессора 8088, которая имела всего 8-битную внешнюю шину данных. Что интересно, системы управления в американских шаттлах используют процессоры 8086, и NASA пришлось в 2002 году покупать процессоры через eBay, поскольку Intel их больше не производила.

Intel 8086Кодовое названиеН/ДДата выпуска1979Архитектура16 битовШина данных16 битовШина адреса20 битовМакс. объём памяти1 МбайтКэш L1НетКэш L2НетТактовая частота4,77-10 МГцFSBРавная частота CPUFPU8087SIMDНетТехпроцесс3 000 нмЧисло транзисторов29 000ЭнергопотреблениеН/ДНапряжение5 ВПлощадь кристалла16 мм²Сокет40-контактный

80286: 16 Мбайт памяти, но всё ещё 16 битов

Процессор с адресной шиной 32

Выпущенный в 1982 году, процессор 80286 был в 3,6 раза быстрее 8086 на той же тактовой частоте. Он мог работать с памятью объёмом до 16 Мбайт, но 286 всё ещё оставался 16-битным процессором. Он стал первым процессором x86, оснащённым диспетчером памяти (memory management unit, MMU), который позволял работать с виртуальной памятью. Подобно 8086, процессор не содержал блока работы с плавающей запятой (floating-point unit, FPU), но мог использовать чип-сопроцессор x87 (80287). Intel выпускала 80286 на максимальной тактовой частоте 12,5 МГц, хотя конкурентам удалось добиться 25 МГц.

Intel 80286Кодовое названиеН/ДДата выпуска1982Архитектура16 битовШина данных16 битовШина адреса24 битаМакс. объём памяти16 МбайтКэш L1НетКэш L2НетТактовая частота6-12 МГцFSBРавная частоте CPUFPU80287SIMDНетТехпроцесс1500 нмЧисло транзисторов134 000ЭнергопотреблениеН/ДНапряжение5 ВПлощадь кристалла49 мм²Сокет68-контактный

386: 32-битный и с кэш-памятью

Нажмите на картинку для увеличения.

Intel 80836 стал первым процессором x86 с 32-битной архитектурой. Вышло несколько версий этого процессора. Две наиболее известные: 386 SX (Single-word eXternal), который использовал 16-битную шину данных, и 386 DX (Double-word eXternal) с 32-битной шиной данных. Можно отметить ещё две версии: SL, первый процессор x86 с поддержкой кэша (внешнего) и 386EX, который использовался в космической программе (например, телескоп «Хаббл» использует этот процессор).

Intel 80386 DXКодовое названиеP3Дата выпуска1985Архитектура32 битаШина данных32 битаШина адреса32 битаМакс. объём памяти4096 МбайтКэш L10 кбайт (иногда присутствует контроллер)Кэш L2НетТактовая частота16-33 МГцFSBРавная частоте CPUFPU80387SIMDНетТехпроцесс1500-1000 нмЧисло транзисторов275 000Энергопотребление2 Вт @ 33 МГцНапряжение5 ВПлощадь кристалла42 мм² @ 1 мкмСокет132 контакта

Процессор с адресной шиной 32

Процессор 486 для многих стал знаковым, поскольку с него началось знакомство с компьютером целого поколения. На самом деле, знаменитый 486 DX2/66 долгое время считался минимальной конфигурацией для геймеров. Этот процессор, выпущенный в 1989 году, обладал рядом новых интересных функций, подобно встроенному на кристалл сопроцессору FPU, кэшу данных и впервые представил множитель. Сопроцессор x87 был встроен в линейку 486 DX (не SX). В процессор был интегрирован кэш первого уровня объёмом 8 кбайт (сначала со сквозной записью/write-through, затем с обратной записью/write-back с чуть более высокой производительностью). Существовала возможность добавления кэша L2 на материнскую плату (работал на частоте шины).

Второе поколение 486 процессоров обзавелось множителем CPU, поскольку процессор работал быстрее, чем FSB, появились версии DX2 (множитель 2x) и DX4 (множитель 3x). Ещё один анекдот: «487SX», продаваемый как FPU для 486SX, представлял собой, по сути, полноценный процессор 486DX, который отключал и заменял оригинальный CPU.

Intel 80486 DXКодовое названиеP4, P24, P24CДата выпуска1989Архитектура32 битаШина данных32 битаШина адреса32 битаМакс. объём памяти4096 МбайтКэш L18 кбайтКэш L2На материнской плате (на частоте FSB)Тактовая частота16-100 МГцFSB16-50 МГцFPUНа кристаллеSIMDНетТехпроцесс1000-800 нмЧисло транзисторов1 185 000ЭнергопотреблениеН/ДНапряжение5 В — 3,3 ВПлощадь кристалла81 — 67 мм²Сокет168 контактов

У DX4 было 16 кбайт кэша и больше транзисторов — 1,6 млн. Этот процессор, изготавливаемый по 600-нм техпроцессу с площадью кристалла 76 мм², потреблял меньше энергии, чем оригинальный 486 (при напряжении 3,3 В).

Intel Pentium: досадная ошибка

Процессор с адресной шиной 32

Pentium, представленный в 1993 году, был интересен по многим причинам. Он стал первым процессором x86, с которым было решено отказаться от традиционных модельных номеров в пользу звучного названия, поскольку Intel не могла создать торговую марку только на одних числах. Кроме того, процессор прославился своей ошибкой. На Pentium первого поколения некоторые операции деления приводили к выдаче неверного результата. Intel заменила процессор, но ущерб компании был нанесён немалый. Ошибка, которая проявляла себя очень редко, вызвала настоящую шумиху в ИТ-прессе.

Pentium продавался в трёх разных линейках, первая была без множителя CPU, вторая — с множителем (включая знаменитый Pentium 166), а последняя обзавелась набором инструкций SIMD для x86 под названием MMX. У Pentium MMX был увеличен размер кэша L1, а также сделаны другие мелкие улучшения. Процессор Pentium стал первым x86 от Intel, способным выполнять две инструкции параллельно. У этих процессоров кэш L2 располагался на материнской плате (он работал на частоте FSB).

Intel Pentium (MMX)Кодовое названиеP5, P54P55 (Pentium MMX)Дата выпуска19931997Архитектура32 бита32 битаШина данных64 бита64 битаШина адреса32 бита32 битаМакс. объём памяти4096 Мбайт4096 МбайтКэш L18 + 8 кбайт16 + 16 кбайтКэш L2Материнская плата (на частоте FSB)Материнская плата (на частоте FSB)Тактовая частота60-200 МГц133-300 МГцFSB50-66 МГц60-66 МГцFPUНа кристаллеНа кристаллеSIMDНетMMXТехпроцесс800-600-350 нм350 нмЧисло транзисторов3,1-3,3 млн.4,5 млн.Энергопотребление8-16 Вт4-17 ВтНапряжение5 — 3,3 В2,8 ВПлощадь кристалла294-163-90 мм²141 мм²СокетSocket 4, 5 or 7Socket 7

Позвольте дать небольшое пояснение по поводу ошибки Pentium: некоторые вычисления на FPU приводили к ошибочному результату. Ошибка появлялась редко — хотя разные источники дают разные оценки по поводу того, насколько редко — и Intel заменила дефектные процессоры бесплатно. Ниже приведён пример ошибки Pentium.

4195835,0/3145727,0 = 1,333 820 449 136 241 002 (правильный результат)

4195835,0/3145727,0 = 1,333 739 068 902 037 589 (неправильный результат на дефектном Pentium)

Pentium Pro: первый, способный работать с памятью объёмом больше 4 Гбайт

Процессор с адресной шиной 32

Pentium Pro, выпущенный в 1995 году, стал первым процессором x86, способным работать с объёмом памяти более 4 Гбайт благодаря расширению Physical Address Extension (PAE), то есть переходу на 36-битное адресное пространство, позволявшее адресовать 64 Гбайт ОЗУ. Что интересно, этот процессор оказался первым с архитектурой P6 (в принципе, в какой-то мере архитектура Core 2 наследована от неё) и также стал первым CPU x86, который содержал кэш L2 на процессоре, а не на материнской плате. По сути, кэш-память от 256 кбайт до 1 Мбайт располагалась рядом с CPU, в той же упаковке, но не на одном кристалле, и работала на той же частоте, что и CPU.

У процессора были некоторые проблемы с производительностью. Он прекрасно работал с 32-битными приложениями, но оказался намного медленнее с программным обеспечением, которое было написано в 16-битном коде (как некоторые части Windows 95). Причина была простая: доступ к 16-битным регистрам вызывал проблемы с управлением 32-битными регистрами, что отменяло преимущества внеочередной архитектуры Pentium Pro

Intel Pentium ProКодовое названиеP6Дата выпуска1995Архитектура32 битаШина данных64 битаШина адреса36 битовМакс. объём памяти64 ГбайтКэш L18 + 8 кбайтКэш L2Внешний, 256-1024 кбайт (на частоте CPU)Тактовая частота150-200 МГцFSB60-66 МГцFPUВстроенныйSIMDН/ДТехпроцесс600-350 нмЧисло транзисторов5 500 000 + кэшЭнергопотребление29-47 ВтНапряжение3,3 ВПлощадь кристалла306-196 мм² + кэшСокетSocket 8

Площадь кристалла с кэшем составляла 202 мм² (256 кбайт на 500 нм), 242 мм 2 (512 кбайт на 350 нм) или 484 мм 2 (1 Мбайт на 350 нм). Число транзисторов в кэше составляло 15,5 млн. (256 кбайт), 31 млн. (512 кбайт) или 62 млн. (1 Мбайт).

Pentium II и III: близнецы-браться

Процессор с адресной шиной 32

Выпущенный в 1997, процессор Pentium II являлся адаптацией Pentium Pro для массового рынка. Он был очень похож на Pentium Pro, но кэш-память различалась. Вместо использования кэша на той же частоте, что и процессор (это было дорого), 512 кбайт кэша L2 работали на половинной частоте. Кроме того, Pentium II оставил классический сокет в пользу картриджа, содержащего процессор и кэш второго уровня, который теперь размещался в картридже, а не на материнской плате или упаковке процессора.

Среди новых функций по сравнению с Pentium Pro можно отметить поддержку MMX (SIMD) и удвоенный размер кэша L1. Первый Pentium III (Katmai) был очень похож на Pentium II. Выпущенный в 1999 году, он добавил поддержку инструкций SSE (SIMD), но в остальном остался идентичен.

Intel Pentium II and IIIКодовое названиеKlamath (Pentium II 0,35 мкм), Deschutes (Pentium II 0,25 мкм), Katmai (Pentium III)Дата выпуска1997, 1998, 1999Архитектура32 битаШина данных64 битаШина адреса36 битов (32 бита на P III)Макс. объём памяти64 Гбайт (4 Гбайт на P III)Кэш L116 + 16 кбайтКэш L2Внешний, 512 кбайт (1/2 частоты CPU)Тактовая частота233-300 МГц (Klamath), 300-450 МГц (Deschutes), 450-600 МГц (Klamath)FSB66-100-133 МГцFPUВстроенныйSIMDMMX (SSE)Техпроцесс350 нм (Klamath), 250 нм (Deschutes, Katmai)Число транзисторов7 500 000 + кэш (Pentium II), 9 500 000 + кэш (Pentium III)Энергопотребление25-35 ВтНапряжение2,8 В (0,35 мкм), 2 В (0,25 мкм)Площадь кристалла204 мм² (0,35 мкм), 131 мм 2 (0,25 мкм), 128 мм 2 (PIII) + кэшСокетSlot 1

Pentium II и III оснащались 512 кбайт кэша L2 (31 млн. транзисторов). Но одна разновидность процессора Pentium II оснащалась кэшем L2 объёмом 256 кбайт на кристалле — Pentium II Mobile Dixon. Он использовал 180-нм техпроцесс и был существенно быстрее, чем настольные версии.

Celeron и Xeon: Intel нацеливается на low-end и high-end

Процессор с адресной шиной 32

В конце 90-х годов Intel выпустила две широко известных марки процессоров: Celeron и Xeon. Первый был нацелен на «бюджетный» рынок, а последней — на серверы и рабочие станции. Первый Celeron (Covington) представлял собой Pentium II без кэша второго уровня и давал слишком низкую производительность, а Pentium II Xeon, напротив, оснащался кэшем большого объёма. Обе марки до сих пор существуют: Celeron для рынка начального уровня (как правило, со сниженным размером кэша и менее скоростной FSB) и Xeon для серверов (с быстрой FSB, иногда с большим кэшем и более высокими тактовыми частотами).

Intel быстро добавила к Celeron 128 кбайт кэша второго уровня в модели Mendocino. Celeron 300A славился своими прекрасными возможностями разгона, позволяя достигать прирост частоты 50% или больше по сравнению со штатной частотой — весьма немало в то время.

Intel Celeron и Intel XeonКодовое названиеCovington, MendocinoDrakeДата выпуска19981998Архитектура32 бита32 битаШина данных64 бита64 битаШина адреса32 бита36 битовМакс. объём памяти4 Гбайт64 ГбайтКэш L116 + 16 кбайт16 + 16 кбайтКэш L20 кбайт/128 кбайт (встроенный, на частоте CPU)Внешний, 512 — 2408 кбайт (на частоте CPU)Тактовая частота266-300 МГц/300-533 МГц400-450 МГцFSB66 МГц100 МГцFPUВстроенныйВстроенныйSIMDMMXMMXТехпроцесс250 нм250 нмЧисло транзисторов7 500 000/19 000 0007 500 000 + кэшЭнергопотребление16-28 Вт30-46 ВтНапряжение2 В2 ВПлощадь кристалла131 мм²/154 мм 2131 мм² + кэшСокетSlot1/Socket 370 PPGASlot 2

Подобно Pentium II, процессор Xeon обладал внешним кэшем L2 внутри картриджа процессора. Его ёмкость составляла от 512 кбайт до 2 Мбайт, а число транзисторов — от 31 до 124 млн.

Pentium III достигает 1 ГГц

Нажмите на картинку для увеличения.

Pentium III Coppermine стал первым серийным процессором x86, который смог достичь частоты 1 ГГц; была выпущена даже версия на 1,13 ГГц, но она быстро покинула рынок из-за проблем со стабильностью. Новая версия Pentium III отличалась улучшенным кэшем второго уровня — теперь он «поселился» на кристалл. Он был быстрее, чем 512 кбайт внешнего кэша на первой модели, и в то время рекламировался как функция, увеличивающая скорость работы в Интернете. Процессор был выпущен ещё в трёх версиях: серверной (Xeon), начального уровня (Celeron) и мобильной (с первым вариантом технологии SpeedStep).

Intel Pentium IIIКодовое названиеCoppermineДата выпуска1999Архитектура32 битаШина данных64 битаШина адреса32 битаМакс. объём памяти4 ГбайтКэш L116 + 16 кбайтКэш L2Встроенный, 256 кбайт (на частоте CPU)Тактовая частота500-1133 МГцFSB100-133 МГЦFPUВстроенныйSIMDMMX (SSE)Техпроцесс180 нмЧисло транзисторов28,1 млн.Энергопотребление25-35 ВтНапряжение1,6 В, 1,8 ВПлощадь кристалла106 мм²СокетSlot 1-Socket 370 FCPGA

В 2002 году появилась чуть более улучшенная версия Tualatin с большим кэшем L2 (512 кбайт) и 130-нм техпроцессом. Она позиционировалась на серверы (PIII-S) и мобильные устройства, и в компьютерах потребительского уровня встречалась нечасто.

Pentium 4: много шума, мало толку

Нажмите на картинку для увеличения.

В ноябре 2000 года Intel анонсировала новый процессор Pentium 4. Он обладал более высокой тактовой частотой (1400 МГц, как минимум), однако существенно уступал конкурирующим CPU, если сравнивать производительность на такт. AMD Athlon (и даже Pentium III) оказывались на равных частотах быстрее. Что ещё усложняло ситуацию, Intel попыталась перейти на память Rambus RDRAM (единственный стандарт памяти в то время, который удовлетворял требованиям FSB CPU), но успеха не добилась. Очень дорогой и горячий, Pentium 4 всё равно смог, после многих модификаций и доработок, выйти на конкурентоспособный уровень через несколько лет (в немалой степени благодаря добавлению кэша L3 и таких технологий, как Hyper-Threading).

Intel Pentium 4 32-bitКодовое названиеWillametteNorthwoodPrescottДата выпуска200020012004Архитектура32 бита32 бита32 битаШина данных64 бита64 бита64 битаШина адреса32 бита32 бита32 битаМакс. объём памяти4 Гбайт4 Гбайт4 ГбайтКэш L18 кбайт + 12 Kµops8 кбайт + 12 Kµops16 кбайт + 12 KµopsКэш L2256 кбайт512 кбайт1024 кбайтТактовая частота1,3-2 ГГц1,8-3,4 ГГц2,4-3,8 ГГцFSB400 МГц QDR400, 533, 800 МГц QDR533, 800 МГц QDRSIMDMMX, SSE, SSE2MMX, SSE, SSE2MMX, SSE, SSE2, SSE3SMT/SMPНетHyper-Threading (некоторые версии)Hyper-ThreadingТехпроцесс180 нм130 нм90 нмЧисло транзисторов42 млн.55 млн.125 млн.Энергопотребление66-100 Вт54-137 Вт94-151 ВтНапряжение1,7 В1,55 В1,25-1,5 ВПлощадь кристалла217 мм²146 мм²112 мм²СокетSocket 423/Socket 478Socket 478Socket 478/LGA775

У Pentium 4 вышли мобильные версии (с изменяемым множителем), версии Celeron (с меньшим кэшем L2) и версии Xeon (с кэшем L3). Hyper-Threading и кэш L3 стали двумя технологиями, которые сначала появились на серверах, а затем были адаптированы для обычных процессоров (хотя кэш L3 был доступен только в дорогой линейке EE).

Нам следует также упомянуть и частоту FSB, эффективная частота которой в четыре раза превосходит номинальную (физическую) благодаря использованию технологии Quad Data Rate (QDR): 400-МГц шина на самом деле работает на частоте 100 МГц, 533-МГц — на 133 МГц и т.д. Наконец, в 2005 году появились 64-битные версии Pentium 4, но мы поговорим о них позже.

Pentium M: ноутбуки стали мощнее

Нажмите на картинку для увеличения.

В 2003 году рынок ноутбуков стал расти огромными темпами, но Intel могла предложить только два процессора: стареющий Pentium III Tualatin и Pentium 4, чьё энергопотребление делало его малопригодным для мобильной сферы. Но спасение пришло от израильской команды разработчиков: Banias (или Pentium M). Этот процессор, основанный на архитектуре P6 (та же самая, что и в Pentium Pro), обеспечивал высокую производительность при низком энергопотреблении. Он даже обгонял Pentium 4, потребляя при этом меньше энергии. Этот процессор был использован в 2003 году для платформы Centrino, и за ним в 2004 году последовала ещё более быстрая модель Dothan. Pentium M прекрасно зарекомендовал себя с мобильном мире, и процессор Stealey (A100) по-прежнему использует архитектуру Dothan (с меньшими частотами и TDP).

Intel Pentium MКодовое названиеBaniasDothanДата выпуска20032004Архитектура32 бита32 битаШина данных64 бита64 битаШина адреса32 бита32 битаМакс. объём памяти4 Гбайт4 ГбайтКэш L132 + 32 кбайт32 + 32 кбайтКэш L21024 кбайт2048 кбайтТактовая частота0,9-1,7 ГГц1-2,13 ГГцFSB400 МГц QDR400, 533 МГц QDRSIMDMMX, SSE, SSE2MMX, SSE, SSE2SMT/SMPНетНетТехпроцесс130 нм90 нмЧисло транзисторов77 млн.140 млн.Энергопотребление9-30 Вт6-35 ВтНапряжение0,9-1,5 В0,9-1,4 ВПлощадь кристалла82 мм²87 мм²СокетSocket 479Socket 479

Как и в случае Pentium 4, шина FSB работает с эффективной частотой, в четыре раза превышающей физическую (QDR). Сокет процессора Socket 479 использует 478 ножек, но они были расположены по-другому, чтобы отличаться от Pentium 4 Socket 478 (хотя существуют переходники).

Pentium 4 получает 64 бита и ещё одно ядро

Нажмите на картинку для увеличения.

В 2005 году Intel дважды улучшила Pentium 4. Сначала появился Prescott-2M, а затем Smithfield. Первый стал 64-битным процессором на основе дизайна Prescott, а последний — первым процессором с двумя ядрами. По сути они очень похожи и обладают схожими проблемами с другими CPU Pentium 4: низким числом исполняемых инструкций за такт (IPC) и сложностью повышения тактовых частот из-за высокого тепловыделения. Два этих процессора, призванных как-то компенсировать нелёгкое положение компании на рынке в ожидании Core 2 Duo, хвалили редко. И хотя процессор Pentium D (коммерческое название для Smithfield) действительно обладал двумя ядрами, они представляли собой два кристалла Prescott в одной упаковке.

Intel Pentium 4Кодовое названиеPrescott-2MSmithfieldДата выпуска20052005Архитектура64 бита64 битаШина данных64 бита64 битаШина адреса64 (действительно 36) бита64 (действительно 36) битаМакс. объём памяти64 Гбайт64 ГбайтКэш L116 кбайт + 12 Kµops2 x 16 кбайт + 12 KµopsКэш L22048 кбайт2 x 1024 кбайтТактовая частота3-3,6 ГГц2,8-3,2 ГГцFSB800 МГц QDR800 МГц QDRSIMDMMX, SSE, SSE2, SSE3MMX, SSE, SSE2, SSE3SMT/SMPHyper-ThreadingДва ядра (Hyper-Threading на некоторых моделях)Техпроцесс90 нм90 нмЧисло транзисторов169 млн.230 млн.TDP84-115 Вт95-130 ВтНапряжение1,2 В1,2 ВПлощадь кристалла135 мм²206 мм²СокетLGA775LGA775

Интересно отметить, что хотя процессоры Pentium 4, предназначенные для массового рынка, не поддерживали технологию PAE (которая обеспечивает 36-битную работу с памятью против 32-битной) и были ограничены 4 Гбайт ОЗУ, эти модели могли превышать этот порог. На практике шина адреса всё равно была ограничена 36 битами (40 битами у Xeon), но технология PAE (управления 4-Гбайт страницами) осталась в прошлом — 64-битные программы могут использовать всю доступную память.

Hyper-Threading, технология виртуальной многопроцессорности Intel (SMT), тоже была доступна на некоторых моделях (Xeon и Extreme Edition). Наконец, позднее появилась 65-нм линейка (модельный ряд 9×0) Pentium 4, но она не содержала каких-либо важных улучшений.

Первый мобильный двуядерный процессор

Нажмите на картинку для увеличения.

В 2006 году Intel объявила процессор Core Duo. Этот первый двуядерный процессор для ноутбуков обеспечивал великолепную производительность — намного лучшую, чем у Pentium 4. Он также оказался первым «настоящим» двуядерным процессором x86. Кэш, например, был общий (в то время как Pentium D был больше похож на сборку двух кристаллов в одной упаковке). Процессор стал частью новой платформы Centrino Duo и оказался весьма успешен. Единственный недостаток — он оставался 32-битным процессором, подобно Pentium 4.

Intel Core DuoКодовое названиеYonahДата выпуска2006Архитектура32 битаШина данных64 битаШина адреса32 битаМакс. объём памяти4 ГбайтКэш L132 + 32 кбайтКэш L22048 кбайт общийТактовая частота1,06-2,33 ГГцFSB667 МГцSIMDMMX, SSE, SSE2, SSE3SMT/SMPДва ядраТехпроцесс65 нмЧисло транзисторов151 млн.TDP9-31 ВтНапряжение0,9-1,3 ВПлощадь кристалла91 мм²СокетSocket 479

Была доступна и версия Core Solo с одним ядром, а также и варианты со сниженным энергопотреблением, которые использовали 533-МГц шину QDR (133 МГц) против 667-МГц. Этот процессор стал использоваться и в серверах (кодовое название Sossaman), что было впервые для процессора, разрабатывавшегося для мобильной сферы. Обратите внимание, что процессор на самом деле не использует архитектуру Core, которая была введена вместе с Core 2 Duo, и он был быстро заменён в ноутбуках вариантом Core 2 Duo (Merom). Кроме того, Socket 479 у Yonah отличается от гнезда Socket 479 других процессоров Pentium M.

Современный лидер: Core 2 Duo

Нажмите на картинку для увеличения.

В 2006 году Intel представила процессор, который быстро стал хитом продаж: Core 2 Duo. При его разработке был в немалой степени почерпнут опыт Pentium M, но процессор использует новую архитектуру Core. До него Intel выпускала две линейки процессоров: Pentium 4 для настольных ПК, Pentium M для ноутбуков и обе линейки для серверов. Но теперь, напротив, у Intel есть единая микроархитектура для всех линеек. 64-битный Core 2 Duo представлен на всех сегментах, от нижнего до верхнего, для настольных ПК, ноутбуков и серверов.

Существует много версий архитектуры, что привело к конфигурациям с разным числом ядер (от одного до четырёх, то есть от Solo до Quad), кэш-памяти (от 512 кбайт до 12 Мбайт) и частотой FSB (от 400 до 1600 МГц QDR). На иллюстрации показана оригинальна модель Core 2 Duo, но существуют и более скоростные версии (45 нм).

Intel Core 2 DuoКодовое названиеConroeДата выпуска2006Архитектура64 битаШина данных64 битаШина адреса64 (действительно 36) битаМакс. объём памяти64 ГбайтКэш L132 + 32 кбайтКэш L22048 кбайт общийТактовая частота1,8-3 ГГцFSB800-1066-1333 МГцSIMDMMX, SSE, SSE2, SSE3, SSSE3SMT/SMPДва ядраТехпроцесс65 нмЧисло транзисторов291 млн.TDP65 ВтНапряжение1,5 ВПлощадь кристалла143 мм²СокетLGA 775

Мобильные версии (Merom), по сути, идентичные (но не такие быстрые, с менее скоростной FSB), а варианты Extreme Edition более скоростные. Core 2 Duo существует и в четырёхъядерном варианте, где используются два двуядерных кристалла Conroe в одной упаковке. У 45-нм версии Core 2 Duo (Penryn) объём кэша больше, а тепла выделяется меньше, но основа осталась такой же, как у первой модели.