Работа динамика ведомого колеса с пневматической шиной

Видео:Основы конструкции пневматических шин - TECH TIRES 101Скачать

Основы конструкции пневматических шин - TECH TIRES 101

Работа динамика ведомого колеса с пневматической шиной

2.2.2. Ведомое колесо

Схема сил, действующих на ведомое колесо и эпюры распределения контактных напряжений по длине контакта, показаны на рис. 2.8. Качение ведомого колеса происходит под действием толкающей силы Рв, приложенной к оси колеса в горизонтальной плоскости, равной силе сопротивления качению ведомого колеса. При этом ось колеса перемещается справа со скоростью υ, а обод колеса вращается с угловой скоростью ω.

Работа динамика ведомого колеса с пневматической шиной

Рис. 2.8. Схема сил, действующих на ведомое колесо и эпюры распределения контактных напряжений по длине контакта

При качении автомобильного колеса его шина непрерывно деформируется в зоне контакта. В зоне первой половины угла контакта, в зоне угла α1, шина прогибается и получает нормальный прогиб, а во второй половине угла контакта в зоне угла 2 она выпрямляется и постепенно освобождается от прогиба, восстанавливая свою первоначальную форму.

На участке AD контакта к шине со стороны опорной поверхности прикладывается нормальная реакция, которая противодействует вращению колеса, т. е. создает момент, препятствующий вращению колеса. На участке DB нормальная реакция опорной поверхности отталкивает шину от опорной поверхности, т. е. создает момент, способствующий качению колеса. В связи с наличием гистерезисных потерь в материале шины давление беговой дорожки на опорную поверхность в зоне угла α2 на участке контакта DB меньше, чем в зоне угла α1 Поэтому нормальная реакция дороги на участке AD больше, чем на участке DB. Это приводит к тому, что общая реакция дороги смещается в направлений большей составляющей, т. е. в зону угла α1 и точка приложения общей реакции смещается по направлению движения колеса на величину а относительно вертикали, проходящей через ось колеса.

В плоскости контакта ведомого колеса действует продольная касательная сила Rx, направленная против движения колеса. Сила Rx является результирующей продольных контактных касательных напряжений τх, приложенных к шине в контакте.

Уравнения равновесия сил и моментов, приложенных к ведомому колесу, дают соотношения:

В связи с описанным процессом деформации шины в контакте при качении эпюра нормальных контактных напряжений ведомого колеса несколько отличается от таковой для неподвижного колеса. Вследствие ослабления давления в зоне угла α2 верхнее основание эпюры нормальных напряжений получает наклон в сторону выхода из контакта (см. рис. 2.8, в).

Картина распределения продольных контактных касательных напряжений шины ведомого колеса имеет свои особенности по сравнению с тем, что имеется у неподвижного колеса. При качении ведомого колеса возникают дополнительные составляющие продольных касательных сил, обусловленные действием в контакте продольной касательной силы Rx и дополнительным угловым смещением элементов беговой дорожки относительно обода колеса при проходе ими зоны контакта.

Как будет показано более подробно ниже (см. разд. «Ведущее колесо»), внешняя касательная сила, действующая в контакте эластичной шины, распределяется по длине контакта по треугольной зависимости, возрастая от нуля на входе в контакт до максимальной величины на выходе из контакта.

На рис. 2.8, г показаны эпюра 1 продольных касательных напряжений неподвижного колеса, а треугольная эпюра 2 представляет распределение по длине контактных напряжений τF, вызванных действием реакции дороги Rx, равной силе сопротивления качению ведомого колеса.

Беговая дорожка шины при равномерном качении ведомого колеса благодаря наличию значительного нормального прогиба шины в контакте проходит зону контакта с переменной угловой скоростью ωn. Эта угловая скорость, как показано в работе [26], может быть выражена зависимостью

Работа динамика ведомого колеса с пневматической шиной

где υ — линейная скорость оси колеса.

В этой же работе приведена зависимость для определения угловой скорости обода колеса

Работа динамика ведомого колеса с пневматической шиной

Анализ этих зависимостей показывает, что в зоне угла α1 контакта в начале ωn ω, что означает уменьшение углового смещения элементов беговой дорожки относительно обода колеса. В середине контакта (точка D) ωn достигает максимальной величины, и угловое смещение элементов беговой дорожки полностью снимается, становится равным нулю.

Видео:Приделал ТРЕУГОЛЬНЫЕ КОЛЁСА к велосипедуСкачать

Приделал ТРЕУГОЛЬНЫЕ КОЛЁСА к велосипеду

Теория эксплуатационных свойств автомобилей

Видео:Подъемник колес пневматический КС-239Скачать

Подъемник колес пневматический КС-239

Свойства пневматической шины

Пневматическую шину широко применяют благодаря её амортизирующим свойствам. Они значительно смягчают толчки от неровностей дороги.

От физико-механических свойств шины зависят такие эксплуатационные показатели автомобиля, как грузоподъемность, экономичность, управляемость, проходимость и др. В конечном итоге все эти показатели определяются значением и видом деформации шины под действием внешних сил.

Различают четыре вида деформаций пневматической шины: радиальную (нормальную), окружную (тангенциальную), поперечную (боковую) и угловую.

^ Радиальная деформация шины измеряется её нормальным прогибом hн, равным разности свободного (r0 ) и статического (rст) радиусов колеса:

Свободный радиус – это радиус колеса, находящегося в свободном (не нагруженном) состоянии.

Например, для низкопрофильной шины типа 205/70-14 этот радиус отыщется как:

r0 = 0,5 d + Н = 0,5 d + В(Н/В)10 -2 ; (100×Н/В) – серия шины; 1 дюйм равен 25,4 мм, то есть:

r0 = (0,5×14×25,4 + 205×0,7)×10 –3 = (177,8 + 143,5)×10 –3 = 0,321 м.

Под действием статической вертикальной нагрузки (веса неподвижной машины) в результате деформации эластичной конструкции шины уменьшается расстояние от оси колеса до опорной поверхности. Это расстояние называется статическим радиусом rст колеса.

Читайте также: Шины для нивы грязевые размеры

где λ – коэффициент, учитывающий деформацию шины при приложении к ней вертикальной нагрузки. Для легковых автомобилей λ = 0,15; для грузовиков λ = 0,1. Для арочных шин λ = 0,1.

^ Нормальный прогиб – одна из важнейших характеристик шины, определяющих её нагрузочную способность и плавность хода. С увеличением прогиба повышаются напряжения в элементах конструкции шины, снижается усталостная прочность и срок её службы. Наибольшее допустимое значение нормальной нагрузки, при котором, несмотря на радиальную деформацию, обеспечивается заданный срок службы шины при заданном давлении воздуха в ней, принято называть грузоподъемностью шины. Величина нормальной нагрузки регламентирована ГОСТ 7463-89.

Тип и параметры ведущих колес для автомобилей выбираются (таблица 1) в соответствии с нормальной нагрузкой на них. Стандартом предусмотрено несколько допустимых нагрузок на шину в зависимости от давления воздуха в ней. При выборе шины для рассчитываемой машины необходимо руководствоваться следующим правилом. Полученная расчетом нормальная нагрузка на шину не должна превышать максимально допустимую по стандарту при наименьшем давлении воздуха в ней из числа значений предусмотренных стандартом.

При определении нагрузки на ведущее колесо следует предусмотреть максимально возможную загруженность в эксплуатации машины с учетом её технологического назначения.

При равномерном статическом распределении веса машины по осям максимальную нагрузку на одно колесо следует определять, исходя из возможного её перераспределения в эксплуатации. В этом случае учитывается нагрузка на ведущее колесо от силы тяжести машины и перевозимого груза, а также от вертикальной составляющей тягового усилия на сцепке прицепа.

Параметры выбранной шины сверяют с типом и параметрами ведущих колес у машины-прототипа. При сопоставлении параметров выбранного колеса и колеса прототипа следует иметь в виду, что заводы-изготовители грузовых машин иногда применяют увеличенный размер шин (если позволяют предъявляемые к машине требования). «Переразмеренные» шины более долговечны, оказывают меньшее давление на почву и придают машине более высокие тяговые свойства. Применение подобных шин наиболее целесообразно на грузовых автомобилях, эксплуатирующихся на грунтовых дорогах или дорогах с плохим покрытием.

Параметры автомобильных шин (ГОСТ 7463-89)

№п/пАвтомобильКолесная формулаОбозначение шиныДавление в шинах,МПа: пер./задн.
1ВАЗ-11112 × 4135 / 80R120,15 / 0,18
2ВАЗ-21064 × 2175 / 70R130,16 / 0,19
3ВАЗ-21084 × 2175 / 70R130,2 / 0,2
4М — 21404 × 26,40 — 130,17 / 0,2
5ГАЗ-31024 × 2205 / R140,2 / 0,2
6ВАЗ-21214 × 46,95 — 160,18 / 0,1
7УАЗ-315124 × 4185 / 80R150,17 / 0,19
8УАЗ-33034 × 48,40 — 150,32 / 0,37
9ГАЗ-33074 × 2.2240 R 5080,45 / 0,63
10.ЗИЛ-431514 × 2.2260 R 5080,4 / 0,63
11ЗИЛ-433104 × 2.2260 R 5080,6 / 0,65
12МАЗ-53374 × 2.2300 R 5080,75 / 0,67
13КамАЗ-53206 × 4.2260 R 5080,73 / 0,43
14ЗИЛ-1316 × 6.1320 R 5080,3 / 0,3
15Урал-43206 × 6.1370 — 5080,32 / 0,32

Нормальный прогиб шины hн обусловлен её деформацией не только в радиальном, но и в окружном и в поперечном направлениях. При этом 40% полной нагрузки сжатия шины затрачивается на деформацию её материала и 60% — на сжатие воздуха.

Различают шины низкого, среднего и высокого давления. Шины низкого давления имеют увеличенный объем воздуха, меньшее число слоев корда. Они мягче воспринимают толчки от неровностей дороги и обладают лучшими амортизирующими свойствами, но при меньшей грузоподъемности. Для шин низкого и среднего давления допустимая нормальная деформация шины составляет 15…20% её высоты, а для шин высокого давления – 10…12%.

^ Окружная деформация шины возникает под действием крутящего момента на колесе Мк, который вызывает деформирование боковин и протектора шины. Вследствие этого обод колеса поворачивается на некоторый угол φТ относительно части протектора, находящейся в контакте с поверхностью качения. Соотношение между крутящим моментом Мк и угловой деформацией φТ шины характеризует её жесткость в окружном направлении. Эта характеристика шины проявляется в динамике:

Податливая шина снижает динамические нагрузки в трансмиссии при трогании с места и разгоне, а также при работе с переменной нагрузкой на сцепке прицепа. Но она подвержена большему износу в тормозном и ведущем режимах. Жесткость шины в окружном направлении повышается с уменьшением профиля шины (серии), с увеличением давления воздуха в ней и нормальной нагрузки.

Под действием касательной силы Рк шина деформируется в продольном направлении. При этом каркас шины и её протектор смещаются в направлении качения колеса. Продольную деформацию оценивают смещением с (мм) оси колеса относительно геометрического центра пятна контакта шины. Жесткость в продольном направлении у шины диагональной конструкции выше по сравнению радиальной с шиной примерно в 1,5 раза. Вследствие более высокой податливости и меньших гистерезисных потерь продольные колебания радиальной шины гасятся менее интенсивно, чем диагональной шиной.

Читайте также: Bmw f34 размеры шин

^ Поперечная (боковая) деформация шины возникает под действием боковой силы Zк и существенно влияет на устойчивость и управляемость автомобиля. При боковой деформации диск колеса смещается относительно пятна контакта на некоторую величину hz. При этом само пятно контакта разворачивается на некоторый угол δ относительно плоскости качения колеса вследствие деформации нижней части шины. Это явление получило название бокового увода колеса. Величина бокового увода оценивается по углу δ бокового увода или по коэффициенту сопротивления боковому уводу ky:

Коэффициент ky характеризует свойство шины противостоять боковому уводу. Он зависит от высоты и ширины профиля шины, угла и слоев нитей корда (см. главу 1 раздела 3 ««Конструкция и расчет автомобиля»), а также от давления воздуха и нагрузки на колесо.

Для каждого типа (серии) шины регламентированы максимальная боковая сила и соответствующий ей максимальный угол бокового увода без бокового проскальзывания элементов протектора. Максимальный угол бокового увода большинства шин равен 3…5 0 . При дальнейшем увеличении боковой силы наступает боковое скольжение колеса. Опыт эксплуатации показывает, что боковой увод колеса влияет не только на управляемость автомобиля, но и на его топливную экономичность, а также на работу шины в целом.

^ Угловая деформация шины возникает под действием момента, нагружающего колесо в плоскости, параллельной поверхности качения колеса, при условии, что в пятне контакта шина имеет сцепление с дорогой. В пределах упругой деформации шина разворачивается относительно пятна контакта на некоторый угол δ, и средняя линия её протектора принимает форму abcd (рис.2).

Рис.1. Угловая деформация шины.

Деформация шины растет с увеличением приложенного к ней момента до потери сцепления с дорогой. Первыми начинают проскальзывать элементы протектора, периферийные по отношению к центру зоны контакта, то есть расположенные вблизи линии границы контакта. По мере увеличения момента проскальзывание шины распространяется от краев к центру пятна контакта. При достижении некоторой критической величины момента все элементы протектора начинают проскальзывать с разной интенсивностью.

Угловая жесткость (податливость) оказывает влияние на показатель управляемости автомобилем. Вследствие допустимой (умеренной) угловой деформации шины облегчается поворот колеса во время движения и снижается проскальзывание элементов протектора в пятне его контакта с дорогой. Излишняя податливость шины приводит к запаздыванию поворота колеса относительно управляющего воздействия со стороны водителя. Причем оно тем больше, чем резче проявляется управляющее воздействие.

^ Динамический и кинематический радиусы колеса .

При движении автомобиля колесо находится под действием силовых факторов, радиус становится еще меньше ввиду тангенциальной деформации шины; его называют динамическим радиусом rд колеса, определяемый расстоянием от центра колеса до опорной поверхности. Динамический радиус уменьшается с увеличением крутящего момента и с уменьшением давления воздуха в шине. Величина rд несколько возрастает с увеличением скорости движения автомобиля.

Динамический радиус колеса является плечом приложения толкающей силы. Поэтому его называют еще силовым радиусом.

Вследствие тангенциальной эластичности и проскальзывания отдельных элементов протектора колеса, путь, проходимый колесом за один оборот становится меньше длины окружности, соответствующей динамическому радиусу. Поэтому в расчетах используется условный кинематический параметр колеса – радиус качения rк.

Таким образом, расчетный радиус качения rк представляет собой такой радиус фиктивного недеформированного колеса, которое при отсутствии проскальзывания имеет с реальным (деформированным) колесом одинаковые линейные (поступательные) скорости качения v и углового вращения ωк.

В практических расчетах этот радиус (фактический радиус качения) колеса оценивается по приближенной формуле:

Для дорог с твердым покрытием (движение колеса с минимальным проскальзыванием) принимают: rк = rд.

При качении жесткого колеса по недеформируемой поверхности (идеальный случай) на колесо действует нагрузка Gк, толкающая сила Р, реакция дороги N, нормальная к поверхности контакта и уравновешивающая нагрузку Gк, а также сила трения между колесом и дорогой μN. Кроме того, в подшипнике колеса возникает момент трения Мr (рис. 2-а). В этом случае сила трения относительно оси колеса равна толкающей силе, а момент силы трения относительно оси колеса равен моменту трения в его подшипнике.

В действительности колесо и опорная поверхность деформируются. При этом точка приложения результирующей реакции контакта смещается в направлении движения на величину а. Эта величина характеризует коэффициент трения качения. На рис.2-б показано движение колеса при небольшой деформации колеса и дороги в зоне контакта. Результирующая сила Z реакций, нормальных к поверхности дороги, смещается вперед на величину а (плечо трения качения). Ее горизонтальная компонента Х является толкающей силой.

Уравнение моментов сил относительно оси колеса найдется как:

В рассматриваемом случае изменение радиуса колеса r1 в связи с малой деформацией можно пренебречь. Толкающая сила Х, необходимая для качения колеса, равна:

Если пренебречь небольшим моментом трения в подшипнике колеса, имеем:

Отношение толкающей силы к нагрузке характеризует сопротивление качению и называется коэффициентом сопротивления качению:

Из приведенных выражений видно, что с увеличением радиуса колеса r1 сопротивление качению уменьшается.

Читайте также: Рейтинг лучших грязевых шин

При качении жесткого колеса (идеальный случай) по мягкому грунту под влиянием нагрузки Gк и толкающей силы Р возникают деформации смятия и сдвига почвы с образованием колеи (рис.2-в,г). Нормальная сила реакции почвы N и сил трения μN между колесом и дорогой расположены по вертикале на расстоянии (r1 ·cos α) от оси колеса. Результирующую силу R (геометрическая сумма сил N и μN) разложим на две составляющие: нормальную к плоскости дороги и перпендикулярную ей (параллельную плоскости дороги) Х (рис.2-г).

При этом уравнение моментов относительно оси вращения колеса запишется как:

Из рис.2-г видно, что реакция дороги Х = Р, а нагрузка на колесо уравновешивается реакцией Z , т.е. Gк = Z.

Пренебрегая трением в подшипнике колеса, имеем:

Работа динамика ведомого колеса с пневматической шиной

Рис.2. Силы и моменты, действующие на ведомое колесо.

Произведение Gк·а представляет собой момент сопротивления качению Мf1. Отсюда толкающая сила Р равна:

Отношение плеча трения качения а к расстоянию от точки приложения толкающей силы Р до точки приложения реакции дороги по вертикали (r1·cos α ) называется коэффициентом сопротивления качению. Из приведенных выше соотношений нетрудно установить, что:

При ускоренном движении машины к оси колеса дополнительно будет приложена сила инерции движущихся масс Рj и момент касательных сил инерции вращающихся масс Мj. В этом случае толкающая сила определится как:

При качении эластичного (деформированного) колеса под действием силовых факторов действительное расстояние от оси вращения колеса до опорной поверхности уменьшается и становится равным rд. Это расстояние называют динамическим радиусом колеса. Его величина зависит от ряда конструктивных и эксплуатационных факторов, таких, например, как жесткость шины и внутреннее давление в ней, вес автомобиля, приходящейся на колесо, скорость движения, ускорение, сопротивление качению и др.

С учетом динамического радиуса для случая ускоренного движения автомобиля зависимость силы ^ Р имеет следующий вид:

Качение эластичного колеса по твердой опорной поверхности (например, по асфальтовому или бетонному шоссе) сопровождается некоторым проскальзыванием элементов протектора колеса в зоне его контакта с дорогой. Это объясняется разностью длин участков колеса и дороги, вступающих в контакт. Проскальзывания не было бы при условии абсолютного равенства этих участков. Но это возможно лишь в том случае, когда колесо и дорога имеют контакт по дуге. В действительности же, опорный контур деформированного колеса вступает в контакт с плоской поверхностью недеформированной дороги, и проскальзывание становится неизбежным.

Для учета этого явления в расчетах используют понятие кинематического радиуса колеса (радиуса качения) rк. Физическое определение rк и методика расчета его величины приведены выше. Заметим лишь, что rк — это условный радиус, который служит для выражения расчетной кинематической зависимости между скоростью движения v автомобиля и угловой скоростью вращения колеса ωк:

Величина проскальзывания растет при одновременном увеличении эластичности (податливости) шины и жесткости дороги или, наоборот, при увеличении жесткости шины и мягкости дороги. На мягкой грунтовой дороге повышенное давление в шине увеличивает потери на деформацию грунта. Снижение внутреннего давления в шине позволяет на мягких грунтах уменьшить перемещение частиц почвы и деформации ее слоев, что обуславливает снижение сопротивления качению и повышению проходимости.

Однако, на твердой опорной поверхности при малом давлении происходит чрезмерный прогиб шин с увеличением плеча трения качения а. Компромиссным решение данной проблемы является использование шин с регулируемым внутренним давлением.

В отличие от ведомого колеса, вращение ведущего колеса крутящим моментом Мк, изменяет направление сил трения и реакций дороги (рис.3-а).

Работа динамика ведомого колеса с пневматической шиной

Рисунок 3-а иллюстрирует схему качения ведущего колеса с пневматической шиной по твердой (например, асфальтовой) дороге, а рисунок 3-б – схему качения такого же колеса по мягкой (грунтовой) дороге.

Рис.3. Силы и моменты, действующие на ведущее колесо.

Уравнение моментов относительно оси вращения колеса при ускоренном движении с учетом момента касательных сил инерции М запишется следующим образом:

Произведение Zк·а , являющееся моментом сопротивления качению ведущего колеса, обозначим через Мf2, тогда:

где α — угол между равнодействующей радиальных реакций и вертикалью.

Со стороны корпуса автомобиля на ведущее колесо действует сила сопротивления Fк и сила инерции поступательно движущихся масс Рj , которые и вызывают реакцию дороги Хк:

Тогда величина необходимого крутящего момента Мк в зависимости от величины моментов сопротивления движению определится как:

При замедленном движении автомобиля (отрицательном ускорении) Рj и М берутся со знаком минус.

Реакция дороги Хк, уравновешивающая сопротивления движению (Fк + Рj), запишется как:

Для случая ускоренного движения эластичного ведущего колеса по твердой недеформируемой дороге уравнение моментов имеет вид:

При торможении автомобиля на колесо действует тормозной момент МТ, направленный против вращения колеса, и тангенциальная реакция дороги Хк в этом случае имеет вид (рис.4):

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📽️ Видео

    Скидывай друзьям, пускай пользуются! #тюнинг #авто #машинаСкачать

    Скидывай друзьям, пускай пользуются! #тюнинг #авто #машина

    Пневмодозатор для балансировочных гранулСкачать

    Пневмодозатор для балансировочных гранул

    Колёса и шиныСкачать

    Колёса и шины

    Утечка воздуха на границе диска и покрышкиСкачать

    Утечка воздуха на границе диска и покрышки

    Конструкция шиныСкачать

    Конструкция шины

    Какой должна быть скорость пневматической дрели? Объясняем на примереСкачать

    Какой должна быть скорость пневматической дрели? Объясняем на примере

    Как работает колесо (часть 1)Скачать

    Как работает колесо (часть 1)

    Травить колеса на бездорожье? А зачем?Скачать

    Травить колеса на бездорожье? А зачем?

    Гибридные будни, стоит ли ставить 16е колеса на низкопрофильной резине.Скачать

    Гибридные будни, стоит ли ставить 16е колеса на низкопрофильной резине.

    Что такое силовая неоднородность?Скачать

    Что такое силовая неоднородность?

    Новое устройство для ошиповки "ПРО-20"Скачать

    Новое устройство для ошиповки "ПРО-20"

    🔴 Зачем нужна клеть для накачки грузовых шин | Взрыв колеса в грузовом шиномонтажеСкачать

    🔴 Зачем нужна клеть для накачки грузовых шин | Взрыв колеса в грузовом шиномонтаже

    JOST. Система подкачки шин на ходу DCA.Скачать

    JOST. Система подкачки шин на ходу DCA.

    Как ВЕС И РАЗМЕР КОЛЕС влияет на РАЗГОН на СЛАБОМ АВТОМОБИЛЕ. ЛЕГКИЕ диски против ТЯЖЕЛЫХ.Скачать

    Как ВЕС И РАЗМЕР КОЛЕС влияет на РАЗГОН на СЛАБОМ АВТОМОБИЛЕ. ЛЕГКИЕ диски против ТЯЖЕЛЫХ.

    Разгон до 100, большие колёса против маленьких.Скачать

    Разгон до 100, большие колёса против маленьких.

    ГРУЗИКИ 50 КГ в КОЛЕСА - МАКСИМАЛЬНЫЙ ДИСБАЛАНС КОЛЕС?Скачать

    ГРУЗИКИ 50 КГ в КОЛЕСА - МАКСИМАЛЬНЫЙ ДИСБАЛАНС КОЛЕС?

    Вилка плохо работает? Решение👍🏻😄Скачать

    Вилка плохо работает? Решение👍🏻😄
Поделиться или сохранить к себе:
Технарь знаток