Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам » При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).». На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин:
- Пропускная способность медной шины
- Выбор сечения шинопроводов
- Выбор сечения шинопроводов
- Выбор сечений проводов, кабелей и шинопроводов
- Выбор медных шин
- Сечение медных шин
- Виды сечения медных шин
- Расчет сечения медных шин
- Заказать медную шину
- Особенности выбора медной шины по току
- Выбор шин по длительно допустимому току
- Допустимый длительный ток для шин прямоугольного сечения
- Допустимые нагрузки по току на медные шины
- Преимущества медных шин
- Пропускная способность по току медной шины
- Ток медной шины по сечению ПЭУ п.1.3.24
- Пропускная способность медной шины
- 🎬 Видео
Видео:Как выбрать провод, автоматы и УЗО? Как рассчитать сечение кабеля, силу тока, мощность.Скачать
Пропускная способность медной шины
Сечение шины, мм | Постоянный ток, А | Переменный ток, А |
---|---|---|
Допустимый ток шина медная 15×3 | 210 | 210 |
Допустимый ток шина медная 20×3 | 275 | 275 |
Допустимый ток шина медная 25×3 | 340 | 340 |
Допустимый ток шина медная 30×4 | 475 | 475 |
Допустимый ток шина медная 40×4 | 625 | 625 |
Допустимый ток шина медная 40×5 | 705 | 700 |
Допустимый ток шина медная 50×5 | 870 | 860 |
Допустимый ток шина медная 50×6 | 960 | 955 |
Допустимый ток шина медная 60×6 | 1145 | 1125 |
Допустимый ток шина медная 60×8 | 1345 | 1320 |
Допустимый ток шина медная 60×10 | 1525 | 1475 |
Допустимый ток шина медная 80×6 | 1510 | 1480 |
Допустимый ток шина медная 80×8 | 1755 | 1690 |
Допустимый ток шина медная 80×10 | 1990 | 1900 |
Допустимый ток шина медная 100×6 | 1875 | 1810 |
Допустимый ток шина медная 100×8 | 2180 | 2080 |
Допустимый ток шина медная 100×10 | 2470 | 2310 |
Допустимый ток шина медная 120×8 | 2600 | 2400 |
Допустимый ток шина медная 120×10 | 2950 | 2650 |
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:
Расчет теоретического веса электротехнических шин:
В Невской Алюминиевой Компании Вы можете купить алюминий со склада в Петербурге или заказать доставку по России.
Cклад Невской Алюминиевой Компании расположен по адресу Лиговский пр. д. 266, недалеко от станции метро «Московские Ворота», рядом грузовая магистраль — Витебский проспект, выезды на ЗСД и КАД.
Документы на погрузку выдаются на месте.
Видео:Провода, токопровод, шиныСкачать
Выбор сечения шинопроводов
Видео:Автомат на 16А для кабеля 2,5мм! Дурные советы электрикаСкачать
Выбор сечения шинопроводов
ВЫБОР СЕЧЕНИЯ ШИНОПРОВОДОВ
При прохождении тока по проводнику последний нагревается. Количество энергии, выделенное неизменным током, определяется из выражения: где — количество выделенного тепла, ВтЧс; I — ток в проводнике, A; R — сопротивление проводника, Ом; t — время прохождения тока, с.
Часть выделяемого тепла идет на повышение температуры проводника, а часть отдается в окружающую среду.
Находящиеся в воздухе шины охлаждаются главным образом путем конвекции, обусловленной движением воздуха вблизи поверхности проводника. Отвод тепла путем лучеиспускания невелик вследствие сравнительно малых температур нагрева проводника. Отвод тепла за счет теплопроводности ничтожен из-за малой теплопроводности воздуха.
Температура токопровода при прохождении тока повышается до наступления теплового равновесия, когда тепло, выделяемое в проводнике, оказывается равным теплу, отводимому с его поверхности в окружающую среду. Превышение температуры проводника над температурой окружающей среды пропорционально количеству выделяемого тепла, а следовательно, квадрату длительно проходящего но проводнику тока и зависит от условий прокладки шин.
Задача расчета шин на нагревание обычно сводится к определению тока, при котором температура проводника не превышает допустимого значения. При этом должны быть известны допустимая температура нагрева проводника, условия его охлаждения и температура окружающей среды. Предельно допустимая температура нагрева шин при длительной работе равна 70°С. Такая температура в основном принята для обеспечения удовлетворительной работа болтовых контактов, как правило, имеющихся в ошиновках. При кратковременном нагреве, например, токами к. з. допустимы предельные температуры для медных шин 300°С, для алюминиевых 200°С. Длительная работа шин при температуре, превышающей 110°С, приводит к значительному снижению их механической прочности вследствие отжига. Расчетная температура окружающей среды для голых проводников по действующим ПУЭ принята 25°С.
Нагрузочная способность проводника характеризуется длительно допустимым током нагрузки, определенным из условий нагрева его при заданных разностях температур проводника и окружающей среды .
Рассмотрим определение нагрузочной способности однородных неизолированных проводников. При тепловом равновесии количество тепла, выделяемое за единицу времени током I в проводе сопротивлением R, равно количеству тепла, отводимому в окружающую среду за то же время:
где — коэффициент теплоотдачи путем конвекции и лучеиспускания (теплопроводность воздуха мала), равный количеству тепла, отводимому в окружающую среду с поверхности проводника при разности температур между проводником и окружающей средой ; F — поверхность охлаждения проводника, ; — температуры проводника и окружающей среды, °С.
Если температуру нагрева проводника приравнять длительно допустимой и принять расчетную температуру окружающей среды , то из условия (10-22) можно определить длительно допустимый ток:
Таким образом, при заданных температурных условиях нагрузочная способность проводника возрастает с увеличением его поверхности охлаждения F, коэффициента теплоотдачи и уменьшением его электрического сопротивления .
Вычисление длительно допустимых токов по указанным формулам достаточно сложно, поэтому в практических расчетах электросетей используют готовые таблицы длительно допустимых токов нагрузки на шины из разных материалов и при разных условиях прокладки, определенных при длительно допустимой температуре окружающей среды. В связи с этим проверка шинопроводов на нагревание сводится к проверке выполнения условия
где — максимальный рабочий ток цепи, в которую включен проводник; — длительно допустимый из условий нагрева тока нагрузки шинопровода.
Наличие явления поверхностного эффекта приводит к тому, что при переменном токе активное сопротивление всегда несколько больше, чем при постоянном. Поэтому согласно формуле (10-23) при прочих равных условиях допустимый ток нагрузки проводника при переменном токе несколько меньше, чем при постоянном. Наиболее существенно это явление сказывается при сплошном сечении шинопровода, например шинопровода прямоугольного сечения.
Иногда применяют шинопроводы трубчатого сечения. В неразрезанных трубах используется металл, расположенный только по поверхности сечения, в результате чего повышение сопротивления от поверхностного эффекта невелико и допустимые нагрузки при постоянном и переменном токах примерно одинаковы.
В установках всех напряжений жесткие шины окрашивают цветными эмалевыми красками. Помимо того, что это облегчает ориентировку и предотвращает коррозию шин, окраска также влияет на нагрузочную способность шин. Постоянное лучеиспускание окрашенных шин значительно больше, чем неокрашенных, поэтому охлаждение шин путем лучеиспускания улучшается, а это в свою очередь приводит к увеличению нагрузочной способности шин. При неизменных температурных условиях допустимый ток нагрузки окрашенных шин на 12—15% больше, чем неокрашенных.
Наибольшая алюминиевая шина прямоугольного сечения 120х10 мм кв. имеет длительно допустимый ток при переменном токе, равный 2070 А. При большем токе нагрузки применяют на фазу несколько полос, собранных в общий пакет и укрепленных совместно на опорных изоляторах. Расстояние между полосами в пакете нормально составляет толщину одной полосы, что необходимо для охлаждения шины в пакете. С увеличением числа полос на фазу допустимая нагрузка возрастает непропорционально числу полос в пакете. При переменном токе, кроме того, еще сказывается эффект близости (подробнее см. раздел). Все это приводит к тому, что нагрузочная способность пакета из нескольких шин меньше, чем суммарная нагрузочная способность того же количества одинаковых шин таких же размере.
Для того чтобы в условиях эксплуатации не имело места превышение допустимых потерь напряжения, шинопроводы рассчитываются по потерям напряжения, как изложено в разделе.
ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ШИН
Допустимые длительные токи для окрашенных шин приведены в таблицах ниже. Они приняты из расчета допустимой температуры их нагрева + 70 °С при температуре воздуха +25 °С.
При расположении шин прямоугольного сечения плашмя токи, приведенные в таблице для шин прямоугольного сечении, должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм.
При выборе шин больших сечений необходимо выбирать наиболее экономичные но условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Допустимый длительный ток для шин круглого и трубчатого сечений
Допустимый длительный ток для шин прямоугольного сечения
Допустимый длительный ток для четырехполосных шин с расположением полос по сторонам квадрата («полый пакет»)
Допустимый длительный ток для шин коробчатого сечения
Видео:Очень опасные ошибки в щитах учётаСкачать
Выбор сечений проводов, кабелей и шинопроводов
Видео:5 ошибок при расключении распределительных коробок.Скачать
Выбор медных шин
Медная электротехническая шина – это проводник, обладающий низким сопротивлением. Медные электротехнические шины изготавливают прямоугольной формы поперечного сечения. Визуально медная электротехническая шина похожа на лист, но большей толщины. УГМК-ОЦМ выпускает медные электротехнические шины широкого диапазона размеров: толщиной 1,2 — 80 мм и шириной 8 — 250 мм. Шины выпускаются в прессованном и тянутом состоянии, в бухтах и отрезках.
На поверхности медных шин не допускаются трещины, раковины, вздутия, поперечные надрывы и грязная технологическая смазка. Отклонения по форме сечения, механическим свойствам, серповидности не превышают значений, установленных нормативной документацией. Возможно изготовление нестандартных форм шины. В этом случае форма оговаривается в спецификации и обязательно прилагается чертеж будущего изделия.
Выбор медной шины зависит от условий использования. При выборе сечения медных шин по току, учитывают, какой максимальный ток будет проходить по шинопроводу. Сечение – соотношение ширины и толщины. Исходя из значения максимального тока выбирается сечение шин по ПУЭ и ГОСТ 434-78.
Видео:Всем электрикам! Допустимый длительный ток для проводов. Полный разбор Таблицы 1.3.4 ПУЭ!Скачать
Сечение медных шин
Шина медная – это полуфабрикат. Электротехническая медная шина используется при сборке низковольтного и высоковольтного оборудования, при монтаже электрических щитов, компенсационных перемычек, электрических узлов подачи и распределения энергии.
Достоинства медной шины – простота монтажа, долговечность, надёжность, устойчивость к коррозии. По сравнению с кабелем шина электротехническая требует меньшее время на установку и техобслуживание. Медь выдерживает перепады температур, она пластична, легко режется и сверлится. Общеизвестно, что медная электротехническая шина высоко тепло- и электропроводима. Поэтому шины из меди, несмотря на кажущуюся дороговизну, экономически рентабельны.
Виды сечения медных шин
Шины выпускают разных марок сплавов, длины и разного сечения.
Разновидности медных шин в зависимости от поперечного сечения:
- Прямоугольные;
- Коробчатые шины;
- Трубчатые шины.
Прямоугольное сечение – самый распространенный вид. Такая шина выглядит как полоса металла прямоугольной формы и называется плоской. Делают электротехническую шину прямоугольного сечения из медной катанки, заготовок, прессованных слитков из марки меди М1 (ГОСТ 859-2001).
Соотношение ширины и толщины изделия бывает разным. Выбор сечения медных шин зависит от допустимого тока. При размере 40*4 мм в однофазном токопроводе допустим ток 625 А. В двухфазном токопроводе (2 пластины) значение допустимого максимального тока вырастет до 1090 А. Все стандартные размеры и значения допустимого тока есть в таблицах допустимых токовых нагрузок.
При выборе сечения медных шин учитывают нормальные условия работы, послеаварийные, неравномерное распределение тока между секциями шин и работу в период ремонта.
УГМК-ОЦМ предлагает прямоугольные медные шины шириной 8 – 250 мм, толщиной 1,2 – 8 мм. Марок сплавов: М1, М2, М3, М1Е, Cu-ETP, С11000.
Коробчатые шины используют при больших рабочих токах. Они обеспечивают наилучшие условия охлаждения при малых добавочных потерях от поверхностного эффекта. Ставят коробчатые шины в открытых токопроводах для соединения блоков турбогенераторов.
Медная шина трубчатого сечения считается самой эффективной: оптимальное сочетание характеристик прочности и отвода тепла. Вокруг таких шин образуется равномерное электрическое поле, которое не дает образоваться коронированию.
Расчет сечения медных шин
Расчет сечения медных шин производится по формулам. Необходимо знать параметры шин: сопротивление, внутреннюю индуктивность, коэффициент теплообмена, частоту синусоидального тока и пр. Учитываются условия работы шины (температура окружающей среды), однослойной будет шина ими многослойной.
Благодаря свойствам меди в одних и тех же условиях выбирают медную шину меньшего размера, чем алюминиевая или сталеалюминиевая.
Заказать медную шину
УГМК-ОЦМ предлагает медную шину собственного производства. Она не уступает по своим характеристикам зарубежной продукции. Шина изготовлена по ГОСТ 434-78 и соответствует международному стандарту качества EN 13601. Цена формируется без дополнительных затрат (импорт, пошлины и пр.). Предлагаем медную шину сплавов М1, М2, Cu-ETP, М3, С11000 в прессованном и тянутом состояниях. Поставка к отрезках и бухтах. Минимальный заказ – 500 кг. Оформите заявку на сайте или свяжитесь с нами по телефону.
Видео:Как выбрать номинал автомата по сечению кабеля ? | KonstArtStudioСкачать
Особенности выбора медной шины по току
Показанные примеры показателей длительно допустимого тока для медных шин приведены исходя из допустимой температуры нагрева до 70о С. Температура окружающей среды не должна превышать 25о С. Надежность эксплуатации медных электротехнических шин обеспечивается при нагреве не выше 85о С. Но при выборе сечения медной шины, учитывается максимально допустимую температуру компонентов, с которыми взаимодействует изделие. И вероятность того, что температура окружающей среды превысит 25о С.
Для облегчения выбора техническими специалистами рассчитаны корректирующие коэффициенты. Параметры максимального тока пересчитаны под несколько вариантов температурных условий. Эти таблицы общедоступны. Они помогут сделать правильный выбор.
Если нет жестких критериев, выбор делается в пользу гибких шин. Они долговечнее и обладают лучшими характеристиками.
Видео:С этим справится даже новичок. Как спроектировать / собрать свой электрощит для квартиры или дома.Скачать
Выбор шин по длительно допустимому току
Выбор шин по длительно допустимому току (по нагреву) учитывают не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможного неравномерного распределения токов между секциями шин [Л2, с.220].
1.1 Определяем ток нормального режима, когда трансформатор загружен на 60%:
- Sн.тр-ра = 16000 кВА – номинальная мощность трансформатора ТДН-16000/110-У1;
- Uн.=10,5 кВ – номинальное напряжение сети;
1.2. Определяем максимальный рабочий ток, когда один из трансформаторов перегружен на 1,4 от номинальной мощности (утяжеленный режим):
По таблице 1.3.31 (ПУЭ 7-издание) определяем допустимый ток для однополосных алюминиевых шин прямоугольного сечения 80х8 мм с допустимым током Iдоп.о = 1320 А.
1.3. Определяем длительно допустимый ток для прямоугольных шин сечением 80х8 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Iдоп.о =1320 А –длительно допустимый ток полосы при температуре шины θш = 70 °С, температуре окружающей среды θо.с = 25 °С и расположения шин вертикально (на ребро), определяемый по таблице 1.3.31 (ПУЭ 7-издание);
k1 — поправочный коэффициент при расположении шин горизонтально (плашмя), согласно ПУЭ 7-издание п. 1.3.23, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм. Принимаем k1 = 0,92 (так как шины будут расположены плашмя).
k2 – поправочный коэффициент для шин при температуре окружающей среды (воздуха) θо.с отличной от 25 °С, определяемый по ПУЭ 7-издание таблица 1.3.3. Принимаем k3 = 0,94 с учетом, что среднеемесячная температура наиболее жаркого месяца равна +30 °С.
Принимаем сечение шин 80х10 мм, с допустимым током Iдоп.о =1480 А.
1.4. Определяем длительно допустимый ток для прямоугольных шин сечением 80х10 мм с учетом поправочных коэффициентов по формуле 9.11 [Л1, с.170]:
Принимаем шины марки АД31Т1 сечением 80х10 мм.
Видео:Как подобрать термоусадку по сечению, или для шины? Таблица с размерами и характеристикамиСкачать
Допустимый длительный ток для шин прямоугольного сечения
Размеры, мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
Ток*, А, при количестве полос на полюс или фазу | Размеры, мм | Ток*, А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15 х 3 | 210 | 165 | _ | 16×2,5 | 55/70 | |||||
20 х 3 | 275 | — | — | — | 215 | — | — | — | 20×2,5 | 60/90 |
25 х 3 | 340 | — | — | — | 265 | — | — | — | 25 х 2,5 | 75/110 |
30 х 4 | 475 | — | — | — | 365/370 | — | — | — | 20 х 3 | 65/100 |
40 х 4 | 625 | -/1090 | — | — | 480 | -/855 | — | — | 25 х 3 | 80/120 |
40х 5 | 700/705 | -/1250 | — | — | 540/545 | -/965 | — | — | 30х 3 | 95/140 |
50х 5 | 860/870 | -/1525 | -/1895 | — | 665/670 | -/1180 | -/1470 | — | 40×3 | 125/190 |
50×6 | 955/960 | -/1700 | -/2145 | — | 740/745 | -/1315 | -/1655 | — | 50×3 | 155/230″ |
60×6 | 1125/1145 | 1740/1990 | 2240/2495 | — | 870/880 | 1350/1555 | 1720/1940 | — | 60 х 3 | 185/280 |
80×6 | 1480/1510 | 2110/2630 | 2720/3220 | — | 1150/1170 | 1630/2055 | 2100/2460 | — | 70 х 3 | 215/320 |
100×6 | 1810/1875 | 2470/3245 | 3170/3940 | — | 1425/1455 | 1935/2515 | 2500/3040 | — | 75 х 3 | 230/345 |
60 х 8 | 1320/1345 | 2160/2485 | 2790/3020 | — | 1025/1040 | 1680/1840 | 2180/2330 | — | 80 х 3 | 245/365 |
80 х 8 | 1690/1755 | 2620/3095 | 3370/3850 | — | 1320/1355 | 2040/2400 | 2620/2975 | — | 90×3 | 275/410 |
100×8 | 2080/2180 | 3060/3810 | 3930/4690 | — | 1625/1690 | 2390/2945 | 3050/3620 | — | 100×3 | 305/460 |
120×8 | 2400/2600 | 3400/4400- | 4340/5600 | — | 1900/2040 | 2650/3350 | 3380/4250 | — | 20×4 | 70/115 |
60 х 10 | 1475/1525 | 2560/2725 | 3300/3530 | — | 1155/1180 | 2010/2110 | 2650/2720 | — | 22 х 4 | 75/125 |
80 х 10 | 1900/1990 | 3100/3510 | 3990/4450 | — | 1480/1540 | 2410/2735 | 3100/3440 | — | 25 х 4 | 85/140 |
100 х 10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30×4 | 100/165 |
120 х 10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40×4 | 130/220 |
50×4 | 165/270 | |||||||||
60×4 | 195/325 | |||||||||
70×4 | 225/375 | |||||||||
80×4 | 260/430 | |||||||||
90х 4 | 290/480 | |||||||||
100×4 | 325/535 |
*В числителе приведены значения переменного тока, в знаменателе — постоянного.
Видео:Исправляем ошибки в квартирном щиткеСкачать
Допустимые нагрузки по току на медные шины
При выборе шинопровода покупателю не требуется рассчитывать параметры изделия. Достаточно знать максимально допустимый ток в системе, постоянный или переменный. ПО приведенной ниже таблице можно подобрать подходящее сечение электротехнической шины и купить продукцию в необходимом объеме.
Сечение шинопровода | Постоянный ток, А | Переменный ток, А |
Медная электротехническая шина 15×3 | 210 | 210 |
Медная электротехническая шина 20×3 | 275 | 275 |
Медная электротехническая шина 25×3 | 340 | 340 |
Медная электротехническая шина 30×4 | 475 | 475 |
Медная электротехническая шина 40×4 | 625 | 625 |
Медная электротехническая шина 40×5 | 705 | 700 |
Медная электротехническая шина 50×5 | 870 | 860 |
Медная электротехническая шина 50×6 | 960 | 955 |
Медная электротехническая шина 60×6 | 1145 | 1125 |
Медная электротехническая шина 60×8 | 1345 | 1320 |
Медная электротехническая шина 60×10 | 1525 | 1475 |
Медная электротехническая шина 80×6 | 1510 | 1480 |
Медная электротехническая шина 80×8 | 1755 | 1690 |
Медная электротехническая шина 80×10 | 1990 | 1900 |
Медная электротехническая шина 100×6 | 1875 | 1810 |
Медная электротехническая шина 100×8 | 2180 | 2080 |
Медная электротехническая шина 100×10 | 2470 | 2310 |
Медная электротехническая шина 120×8 | 2600 | 2400 |
Медная электротехническая шина 120×10 | 2950 | 2650 |
Компания НТЦМ предлагает купить электротехнические медные шины в большом ассортименте. На складе предприятия представлена продукция в различных типоразмерах. Отличные технические характеристики, конкурентоспособная стоимость, сжатые сроки доставки изделий в любой регион страны – основные преимущества заказа электротехнических шинопроводов в НТЦМ.
Видео:Распределительный щит. Сборка трехфазного щита. Подключение автоматов.Скачать
Преимущества медных шин
Наряду с медными шинами в электротехнике используются шины алюминиевые. Алюминиевую шину ценят за доступную цену и легкость металла. Однако в долгосрочной перспективе медные шины станут экономически выгодным решением.
Медь имеет большую теплопроводимость. При одинаковом сечении медная шина выдержит в процентном отношении большую нагрузку, чем алюминиевая такого же размера. Медная шина сводит к минимуму потерю энергии при передаче. Они высокоэластичны и устойчивы к растяжению. Медная шина легко изгибается, не теряя своих технических свойств. Это позволяет собирать распределительные и силовые установки меньшего размера. Она устойчива к воздействию высоких и низких температур, выдерживает большее напряжение. Выбирая между алюминиевой шиной и медной, предпочтение отдают последней.
Видео:Как подобрать сечение кабеля, автоматы и розеткиСкачать
Пропускная способность по току медной шины
Ток медной шины по сечению ПЭУ п.1.3.24
Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам » При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).». На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин:
Кроме таблицы токов медных шин, Вы также можете изучить материалы
Видео:Цветовая маркировка проводов и шинСкачать
Пропускная способность медной шины
Сечение шины, мм | Постоянный ток, А | Переменный ток, А |
Допустимый ток шина медная 15×3 | 210 | 210 |
Допустимый ток шина медная 20×3 | 275 | 275 |
Допустимый ток шина медная 25×3 | 340 | 340 |
Допустимый ток шина медная 30×4 | 475 | 475 |
Допустимый ток шина медная 40×4 | 625 | 625 |
Допустимый ток шина медная 40×5 | 705 | 700 |
Допустимый ток шина медная 50×5 | 870 | 860 |
Допустимый ток шина медная 50×6 | 960 | 955 |
Допустимый ток шина медная 60×6 | 1145 | 1125 |
Допустимый ток шина медная 60×8 | 1345 | 1320 |
Допустимый ток шина медная 60×10 | 1525 | 1475 |
Допустимый ток шина медная 80×6 | 1510 | 1480 |
Допустимый ток шина медная 80×8 | 1755 | 1690 |
Допустимый ток шина медная 80×10 | 1990 | 1900 |
Допустимый ток шина медная 100×6 | 1875 | 1810 |
Допустимый ток шина медная 100×8 | 2180 | 2080 |
Допустимый ток шина медная 100×10 | 2470 | 2310 |
Допустимый ток шина медная 120×8 | 2600 | 2400 |
Допустимый ток шина медная 120×10 | 2950 | 2650 |
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:
Расчет теоретического веса электротехнических шин:
В Невской Алюминиевой Компании Вы можете купить алюминий со склада в Петербурге или заказать доставку по России.
Cклад Невской Алюминиевой Компании расположен по адресу Лиговский пр. д. 266, недалеко от станции метро «Московские Ворота», рядом грузовая магистраль — Витебский проспект, выезды на ЗСД и КАД. Документы на погрузку выдаются на месте.
🎬 Видео
Как соединить провода в распределительной коробке без пайки — клемники, СИЗ, гильзы, что лучше?Скачать
Сборка электрощита для квартиры и дома своими руками. Как самому собрать электрический щит.Скачать
Простой трёхфазный электрощит. Рисунки + Сборка.Скачать
Сборка щитка для квартиры. Как собрать щиток. Почти мастер-классСкачать
САМАЯ ПОДРОБНАЯ СБОРКА ЩИТА | ЭЛЕКТРИКА ОТ SYSTEMTOPСкачать
Вводной кабель в квартиру с этажного щита. Замена автоматовСкачать
Как правильно подключить автомат. Ошибки при подключении автоматического выключателя.Скачать