Разрядность шины адреса 16 размер ячейки оперативной памяти 1 байт

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Иллюстрированный самоучитель по теории операционных систем

Видео:Разные планки оперативной памяти. Можно ли совмещать в одном ПК?Скачать

Разные планки оперативной памяти. Можно ли совмещать в одном ПК?

Адресация оперативной памяти

С точки зрения процессора, оперативная память представляет собой массив пронумерованных ячеек. Номер каждой ячейки памяти называется ее адресом. Разрядность адреса является одной из важнейших характеристик процессора и реализуемой им системы команд. Разрядность важна не как самоцель, а потому, что ею обусловлен объем адресуемой памяти – адресного пространства. Системы с 16-разрядным адресом способны адресовать 64 Кбайт (65 536) ячеек памяти, а с 32-разрядным – 4 Гбайт (4 294 967 296) ячеек. В наше время адресуемая память в 4 Гбайт для многих приложений считается неприемлемо маленькой и требуется 64-разрядная адресация.

Процессору обычно приходится совершать арифметические операции над адресами, поэтому разрядность адреса у современных процессоров обычно совпадает с разрядностью основного АЛУ.

У некоторых компьютеров адресация (нумерация) ячеек памяти фиксированная: одна и та же ячейка памяти всегда имеет один и тот же номер. Такая адресация называется физической. Адрес при этом разбит на битовые поля, которые непосредственно используются в качестве номера физической микросхемы памяти, и номеров строки и столбца в этой микросхеме. Напротив, большинство современных процессоров общего назначения используют виртуальную адресацию, когда номер конкретной ячейки памяти определяется не физическим размещением этой ячейки, а контекстом, в котором происходит адресация. Способы реализации виртуальной памяти и необходимость ее применения обсуждаются в Главе 5.

В старых компьютерах размер адресуемой ячейки памяти данных совпадал с разрядностью АЛУ центрального процессора и разрядностью шины данных. Адресуемая ячейка называлась словом. В процессорах манчестерской архитектуры, которые могут использовать одну и ту же память как для команд, так и для данных, оба размера определялись длиной команды. Из-за этого многие процессоры такого типа имели странные по современным представлениям разрядности – 48, 36, иногда даже 25 бит.

БЭСМ-6

Так, БЭСМ-6 имела слово разрядностью 48 бит и команды длиной 24 бита, состоявшие из 15-разрядного адресного поля и 9-разрядного кода операции. Адресное поле позволяло адресовать 32К слов. В одном слове размещалось две команды, при этом команды перехода могли указывать только на первую из упакованных в одно слово команд.

У процессоров гарвардской архитектуры (имеющих раздельные памяти для команд и данных) разрядность АЛУ и размер команды не связаны.

Microchip PIC

Микроконтроллеры семейства PIC фирмы Microchip имеют 8-разрядное АЛУ и накристалльное ОЗУ той же разрядности [www.microchip.com PICMicro]. Команды этих микроконтроллеров размещаются в ПЗУ (также накристалльном), в котором каждое слово имеет 12 бит и содержит одну команду. Аналогично БЭСМ-6, команда микроконтроллера состоит из адресного поля (которое может содержать как адрес, так и константное значение длиной 1 байт) и кода операции. Под код операции остается всего четыре бита, поэтому команд, имеющих полное адресное поле, может быть не более 16. Адресное пространство микроконтроллера составляет 8 бит, т. е. всего 256 слов кода и 256 байт данных. Однако при помощи ухищрения, называемого банковой адресацией (подробнее об этом см. в разд. «Банки памяти»), старшие модели семейства PIC адресуют и по несколько килобайтов как кода, так и данных.

Впрочем, для многих целей и 256 команд вполне достаточно. Самый маленький в мире Web-сервер [www.ccs.cs.umass.edu] реализован именно на основе PIC. В 512 слов кода удалось упаковать реализацию полноценных подмножеств протоколов RS232 (использованная модель микроконтроллера не имеет аппаратно реализованного последовательного порта), РРР, TCP/IP и HTTP. Web-сервер состоит из двух микросхем – собственно сервера и кристалла флэш-памяти, в котором хранятся экспортируемые сервером HTML-документы и изображения. Сервер включается в последовательный порт компьютера и получает питание от этого порта.

Разработчик сервера рекламирует его как основу (или, во всяком случае, как демонстрацию технической возможности) создания Web-интерфейсов для разнообразного бытового оборудования.

Читайте также: Утилизация шин в петрозаводске

Видео:Разрядность шины памяти, 1Скачать

Разрядность шины памяти, 1

Глава 1. Компьютер. Программное и аппаратное обеспечение

Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств

Вспомним, на прошлом уроке рассматривалось устройство материнской платы. Рассмотрим более подробно, какие же логические устройства можно установить на системную плату, т.к. системная плата наравне с процессором является основным устройством любого современного компьютера. Так же необходимость более подробного знакомства с системной платой обусловлено тем, что на системных платах реализуются шины различных типов. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате, как было сказано на прошлом уроке, устанавливаются специальные микросхемы (чипсеты), вклю­чающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). (см. рис. 1)

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

К северному мосту подключается шина PCI ( Peripherial Component Interconnect bus — шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше — 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI -контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP ( Accelerated Graphic Port — ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI .

Южный мост обеспечивает обмен информацией между се­верным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD — ROM , DVD — ROM ) подключаются к южному мосту по шине UDMA ( Ultra Direct Memory Access — прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают элек­трические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются после­довательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT , а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB ( Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью порта PS/2 или USB .

Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Рассмотрим структуру магистрали (системной шины), т.к. модульная организация системы опирается на магистральный (шинный) принцип обмена информации.

Магистраль

Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Читайте также: Давление при монтаже шин

Системная магистраль осуществляет обмен данными между процессором или ОЗУ с одной стороны и контроллерами внешних устройств компьютера с другой стороны.

Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, —

Шины представляют собой многопроводные линии. Тип системных шин, применяемых в компьютерах с невысокой производительностью — ISA. Это дешевая но «малоинтеллектуальная» шина. Она может обеспечивать обмен с клавиатурой, дисплеем (алфавитно-цифровым), дисководами для гибких дискет, принтерами и модемами. Однако ее возможностей не достаточно для работы с дисководами для жестких дисков, видеоконтроллерами, адаптерами локальных сетей и т.п.

Шина MCA — более производительная, но не совместима с ISA, поэтому не нашла широкого применения.

Шина EISA — совместима с ISA , значительно дороже, чем ISA и не всегда обеспечивая нужную скорость обмена.

Шина VESA (VL) — более дешевая шина, используется в сочетании с ISA или с EISA.

Шина PCI — конкурент шины VESA , используется в PENTIUM в сочетании с ISA или EISA.

Рис 2. Магистрально-модульный принцип

Как уже было сказано, подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Шина данных

По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Шина адреса

Шина адреса предназначена для передачи по ней адреса того устройства (или той ячейки памяти), к которому обращается процессор. Адрес на нее выдает всегда только процессор. По шине данных передается вся информация. При операции записи информацию на нее выставляет процессор, а считывает то устройство (например, память или принтер), адрес которого выставлен на шине адреса. При операции чтения информацию выставляет устройство, адрес которого выставлен на шине адреса, а считывает процессор.

Таким образом, каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N =2 I , где I — разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N == 2 32 = 4 294 967 296 = 4 Гб

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Несмотря на то, что общий объем адресуемой памяти достигает 4 Гбайт, величина фактически установленной оперативной памяти может быть значительно меньше — 32 Мбайта.

Читайте также: Гудиер шины где производство

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Шина управления

По шине управления передаются сиг­налы такие, например, как сигналы чтения, записи, готовности, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами. Кроме того, каждое внешнее устройство, которому нужно обратиться к процессору, имеет на этой шине собственную линию. Когда периферийное устройство «хочет обратиться» к процессору, оно устанавливает на этой линии специальный сигнал (сигнал прерывания), заметив который, процессор прерывает выполняемые в этот момент действия и обращается (командой чтения или записи) к устройству.

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти (см. таблицу). Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последний, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее.

Особо отметим, что обмен по шине при определенных условиях и при наличии определенного вспомогательного оборудования может происходить и без непосредственного участия процессора, например, между устройством ввода и внутренней памятью.

Подчеркнем также, что описанная нами функциональная схема на практике может быть значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков любую индивидуальную конфигурацию компьютера.

Таким образом, Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Необходимость использования контроллеров вызвана тем, что функциональные и технические параметры компонентов компьютера могут существенно различаться, например, их быстродействие. Так, процессор может проводить сотни миллионов операций в секунду, тогда как пользователь может вводить с клавиатуры, в лучшем случае 2-3 знака в секунду. Контроллер клавиатуры как раз и обеспечивает согласование скорости ввода информации со скоростью ее обработки.

Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    📹 Видео

    Разрядность шины видеопамяти, 1Скачать

    Разрядность шины видеопамяти, 1

    Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

    Виды видеопамяти и сколько её нужно? Какая нужна шина?

    КАК ВЫБРАТЬ ОПЕРАТИВНУЮ ПАМЯТЬ? 16 или 32 ГБ сколько памяти нужно в 2023 году?Скачать

    КАК ВЫБРАТЬ ОПЕРАТИВНУЮ ПАМЯТЬ? 16 или 32 ГБ сколько памяти нужно в 2023 году?

    8 ГБ vs 16 ГБ vs 32 ГБ | Сколько нужно оперативной памяти? | 1,2,4 планки ОЗУСкачать

    8 ГБ vs 16 ГБ vs 32 ГБ | Сколько нужно оперативной памяти? | 1,2,4 планки ОЗУ

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

    Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

    Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

    Влияние шин PCI-e и внутренней шины видеокарты на производительность

    Больше памяти - быстрее ПК?Скачать

    Больше памяти - быстрее ПК?

    Почему размер байта 8 бит. Машина Тьюринга. Принцип выполнения программыСкачать

    Почему размер байта 8 бит. Машина Тьюринга. Принцип выполнения программы

    Как работает оперативная память (RAM, ОЗУ)? Компьютер простым языком HYPERPC. #3Скачать

    Как работает оперативная память (RAM, ОЗУ)? Компьютер простым языком HYPERPC. #3

    Оперативная память. Сколько нужно ставить? #базаСкачать

    Оперативная память. Сколько нужно ставить? #база

    Апгрейд ПК с планками памяти разного объема. Тестируем с KingstonСкачать

    Апгрейд ПК с планками памяти разного объема. Тестируем с Kingston

    Выдергиваем оперативную память во время работы ПК!Скачать

    Выдергиваем оперативную память во время работы ПК!

    Шина компьютера, оперативная память, процессор и мостыСкачать

    Шина компьютера, оперативная память, процессор и мосты

    Оперативная памятьСкачать

    Оперативная память

    Оперативная память персонального компьютераСкачать

    Оперативная память персонального компьютера

    Тюнинг Оперативной памятиСкачать

    Тюнинг Оперативной памяти

    Про оперативную памятьСкачать

    Про оперативную память
Поделиться или сохранить к себе:
Технарь знаток