Разрядность шины адреса современного процессора

Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Глава 1. Компьютер. Программное и аппаратное обеспечение

Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств

Вспомним, на прошлом уроке рассматривалось устройство материнской платы. Рассмотрим более подробно, какие же логические устройства можно установить на системную плату, т.к. системная плата наравне с процессором является основным устройством любого современного компьютера. Так же необходимость более подробного знакомства с системной платой обусловлено тем, что на системных платах реализуются шины различных типов. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате, как было сказано на прошлом уроке, устанавливаются специальные микросхемы (чипсеты), вклю­чающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). (см. рис. 1)

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

К северному мосту подключается шина PCI ( Peripherial Component Interconnect bus — шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше — 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI -контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP ( Accelerated Graphic Port — ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI .

Южный мост обеспечивает обмен информацией между се­верным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD — ROM , DVD — ROM ) подключаются к южному мосту по шине UDMA ( Ultra Direct Memory Access — прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают элек­трические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются после­довательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT , а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB ( Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью порта PS/2 или USB .

Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Рассмотрим структуру магистрали (системной шины), т.к. модульная организация системы опирается на магистральный (шинный) принцип обмена информации.

Магистраль

Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Системная магистраль осуществляет обмен данными между процессором или ОЗУ с одной стороны и контроллерами внешних устройств компьютера с другой стороны.

Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, —

Шины представляют собой многопроводные линии. Тип системных шин, применяемых в компьютерах с невысокой производительностью — ISA. Это дешевая но «малоинтеллектуальная» шина. Она может обеспечивать обмен с клавиатурой, дисплеем (алфавитно-цифровым), дисководами для гибких дискет, принтерами и модемами. Однако ее возможностей не достаточно для работы с дисководами для жестких дисков, видеоконтроллерами, адаптерами локальных сетей и т.п.

Шина MCA — более производительная, но не совместима с ISA, поэтому не нашла широкого применения.

Шина EISA — совместима с ISA , значительно дороже, чем ISA и не всегда обеспечивая нужную скорость обмена.

Шина VESA (VL) — более дешевая шина, используется в сочетании с ISA или с EISA.

Шина PCI — конкурент шины VESA , используется в PENTIUM в сочетании с ISA или EISA.

Рис 2. Магистрально-модульный принцип

Как уже было сказано, подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Шина данных

По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Шина адреса

Шина адреса предназначена для передачи по ней адреса того устройства (или той ячейки памяти), к которому обращается процессор. Адрес на нее выдает всегда только процессор. По шине данных передается вся информация. При операции записи информацию на нее выставляет процессор, а считывает то устройство (например, память или принтер), адрес которого выставлен на шине адреса. При операции чтения информацию выставляет устройство, адрес которого выставлен на шине адреса, а считывает процессор.

Таким образом, каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N =2 I , где I — разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N == 2 32 = 4 294 967 296 = 4 Гб

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Несмотря на то, что общий объем адресуемой памяти достигает 4 Гбайт, величина фактически установленной оперативной памяти может быть значительно меньше — 32 Мбайта.

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Шина управления

По шине управления передаются сиг­налы такие, например, как сигналы чтения, записи, готовности, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами. Кроме того, каждое внешнее устройство, которому нужно обратиться к процессору, имеет на этой шине собственную линию. Когда периферийное устройство «хочет обратиться» к процессору, оно устанавливает на этой линии специальный сигнал (сигнал прерывания), заметив который, процессор прерывает выполняемые в этот момент действия и обращается (командой чтения или записи) к устройству.

Читайте также: Посоветуйте зимние шины для кроссовера

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти (см. таблицу). Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последний, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее.

Особо отметим, что обмен по шине при определенных условиях и при наличии определенного вспомогательного оборудования может происходить и без непосредственного участия процессора, например, между устройством ввода и внутренней памятью.

Подчеркнем также, что описанная нами функциональная схема на практике может быть значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков любую индивидуальную конфигурацию компьютера.

Таким образом, Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Необходимость использования контроллеров вызвана тем, что функциональные и технические параметры компонентов компьютера могут существенно различаться, например, их быстродействие. Так, процессор может проводить сотни миллионов операций в секунду, тогда как пользователь может вводить с клавиатуры, в лучшем случае 2-3 знака в секунду. Контроллер клавиатуры как раз и обеспечивает согласование скорости ввода информации со скоростью ее обработки.

Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.

Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

О разрядности процессоров

Целью данной статьи является попытка посеять сомнение в голове читателя, уверенного, что он знает о разрядности всё или почти всё. Но сомнение должно быть конструктивным, дабы сподвигнуть на собственное исследование и улучшить понимание.

Термин «разрядность» часто используют при описании вычислительных устройств и систем, понимая под этим число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство. Но именно применительно к центральным процессорам (ЦП), как к наиболее сложным представителям вычислительного железа, не делимым на отдельные детали (до тех пор, пока кто-то не придумал, как продать отдельно кэш или умножитель внутри чипа), понятие разрядности оказывается весьма расплывчатым. Продемонстрировать это поможет умозрительный пример.

Представьте себе, что вокруг благодатные 80-е, в мире (всё ещё) десятки производителей ЦП, и вы работаете в одном из них над очередным поколением. Никаких 256-битных SSE8, встроенных GPU и 5-канальных контроллёров памяти на свете пока нет, но у вас уже есть готовый 16-битный процессор (точнее, «16-битный» пишется в технической документации), в котором 16 бит везде и во всём — от всех внешних шин до архитектурного размера обрабатываемых данных. Реальным примером такого ЦП могут быть первые однокорпусные (правда, не однокристальные) ЦП для архитектуры DEC PDP-11. И вот приходит задание руководства — разработать новое, обратно совместимое поколение этого же ЦП, которое будет 32-битным — не уточняя, что понимается под последним. Именно это понимание и предстоит прояснить в первую очередь. Итак, наш главный вопрос: что именно надо удвоить по разрядности в нашем пока насквозь 16-битном ЦП, чтобы получившийся процессор мог называться 32-битным? Чтобы решать задачу было легче, применим два подхода: систематизируем определения и посмотрим на примеры.Систематизируем

Первое, что приходит в голову — разрядность чего именно считать? Обратимся к определению любой информационной системы: её три основных функции — это обработка, хранение и ввод-вывод данных, за которые отвечают, соответственно, процессор(ы), память и периферия. Учитывая, что сложная иерархически самоподобная система состоит из многих компонент, можно утверждать, что такое разделение функций сохраняется и на компонентном уровне. Например, тот же процессор в основном обрабатывает данные, но он также обязан их хранить (для чего у него есть относительно небольшая память) и обмениваться с другими компонентами (для этого есть разные шины и их контроллёры). Поэтому будем функционально разделять разрядности обработки, хранения и обмена информации.

Рискну предположить, что все производители любого программируемого «железа», особенно процессоров, на 90% стараются не для конечных пользователей, а для программистов. Следовательно, с точки зрения производителей процессор должен выполнять нужные команды нужным образом. С другой стороны, детали структуры кристалла (топологические, электрические и физические параметры отдельных транзисторов, вентилей, логических элементов и блоков) могут быть скрыты не только от пользователя, но и от программиста. Выходит, что разрядность надо отличать и по реализации — физическую и архитектурную.

Следует добавить, что программисты тоже бывают разные: большинство пишут прикладные программы на языках высокого уровня с помощью компиляторов (что делает код до некоторой степени платформонезависимым), некоторые пишут драйверы и компоненты ОС (что заставляет более внимательно относиться к учёту реальных возможностей аппаратной части), есть творцы на ассемблере (явно требующем знания целевого процессора), а кто-то пишет сами компиляторы и ассемблеры (аналогично). Поэтому под программистами далее будем понимать именно тех, для кого детали аппаратной реализации важны если не для написания программы вообще, то хотя бы для её оптимизации по скорости — «архитектурная» разрядность чего-либо будет относиться именно к программированию на родном машинном языке процессора или более удобном ассемблере, не залезая при этом в нутро ЦП (это уже вопросы микроархитектуры, которую мы для большего различия и назвали физической реализацией). Описанные нюансы всё равно влияют на всех программистов, т.к. языки высокого уровня почти всегда переводятся компиляторами в машинный код, а компиляторы тоже должен кто-то написать. Исключения в виде интерпретируемых языков тоже не стоят в стороне — сами интерпретаторы тоже создаются с помощью компиляторов.

Осталось рассмотреть, разрядность какой именно информации нам интересна. Что вообще потребляет и генерирует ЦП в информационном смысле? Команды, данные, адреса и сигнально-управляющие коды. О последних речь не идёт — их разрядность жёстко зафиксирована в конкретной аппаратной реализации и в большинстве случаев программно не управляема. Чуть трудней с командами — в семействе архитектур RISC, например, разрядность любого обращения к памяти должна быть равна физической разрядности шины данных процессора, в т.ч. и при считывании кода (кроме некоторых послаблений в современных ARM и PowerPC). Это хорошо для ЦП — нет проблем с невыровненным доступом, все команды имеют одинаковую, либо переменную, но просто вычисляемую длину. Зато плохо для программиста — RISC это усечённый набор команд, которые ещё и занимают больше места, чем при более компактном кодировании (для того же алгоритма нужно больше команд, но и для того же числа команд надо больше байтов). Поэтому именно CISC-парадигма завоевала наибольший подход с её разнообразием и переменной длинной команд, не равной разрядности чего-либо. Разумеется, все современные ЦП внутри — настоящие RISC, но это только физически, а не архитектурно. Остались только два вида информации — данные и адреса. Их и рассмотрим.Собираем

Читайте также: Карета из шины своими

У нас имеется три критерия видов разрядности: функциональный (обработки, хранения и обмена), реализационный (физическая и архитектурная) и типовой (данных и адресов). Итого уже 12 видов этой непонятной штуки. Предположим, что на каждую комбинацию критериев для нашего исходного ЦП мы отвечаем «16-битная» (и физическая разрядность обработки данных, и архитектурная хранения адресов, и все остальные). Теперь посмотрим, какие из этих вопросов обязательно должны давать ответ «32-битная», чтобы получившийся процессор оказался именно таким.

Начнём с архитектурной части. Должен ли ЦП хранить данные и адреса в логическом 32-битном формате, чтобы называться 32-битным? Насчёт данных, очевидно, да, а вот по поводу адресов всё не так просто. Почти все 8-битные (по данным) ЦП имеют возможность хранить 16-битные адреса в парах регистров (иначе им не видать распространённой на этих платформах 16-битной адресации), но от этого их не называют 16-битными. Может быть, если ЦП сможет хранить 32-битные данные, но всего-то 16-битные адреса, его уже можно называть 32-битным.

На аналогичные вопросы об архитектурных вычислениях над 32-битными данными и адресами, а также программно 32-битном обмене данных с программно 32-битной адресацией ответ может быть таким же — с данными надо, а с адресами не факт.

Перейдём на физическую реализацию. Должен ли ЦП хранить данные и адреса в физически 32-битном формате? Оказывается, не обязательно, т.к. для 32-битных операндов можно спарить регистры, чем успешно пользовались ещё 8-битные ЦП, начиная с i8080. А зилоговские 16-битные Z8000 могли даже счетверять регистры, получая 64-битный аргумент (только для данных). Это не так эффективно, т.к. полный объём данных, умещающийся в регистровом файле, не увеличится, но это и не требовалось. Зато всегда есть возможность обратиться и к старшей, и к младшей половине виртуального 32-битного регистра — камень в огороды архитектур IA-32 и MC68k, где можно обращаться только к младшей половине (в IA-32 — ещё и с префиксом, что замедляет выполнение).

Идём далее. Должен ли ЦП обрабатывать данные и адреса 32-битными физическими порциями? Оказывается, и это не требуется, операнды можно обрабатывать половинками в функциональных устройствах 16-битного размера. Стоит вспомнить процессор Motorola MC68000, применявшийся в первых Макинтошах, Амигах, Атари и других популярных машинах — он считался 32-битным, в нём есть 32-битные регистры, но нет ни одного 32-битного ФУ (оно появилось только в 68020). Зато есть целых три 16-битных АЛУ, два из которых умеют спариваться при выполнении 32-битной операции. У i8080 и Z80 8-битные АЛУ выполняли 16-битные операции для вычисления адреса последовательно над его байтами. Позже эта история повторилась с набором SSE и его 128-битными операндами, которые поначалу обрабатывались на 64-битных ФУ.

Наконец, обмен: нужно ли процессору физически принимать и передавать данные 32-битными порциями с 32-битной адресацией? На первый вопрос дали ответ почти все производители ЦП, выпустив чипы с половинной шириной шины: 8 бит для 16-битного i8088, 16 бит для 32-битных MC68000/010 и i80386SX/EX/CX, и даже 8 бит для 32-битного MC68008. С физической разрядностью шины адреса куда веселее. Начнём с того, что для многобайтовых шин данных (т.е. начиная с 16-битной) физическая адресация памяти может происходить по словам или по байтам. В первом случае на шину адреса всегда подаётся адрес слова, а шина данных считывает или записывает нужную его часть — от отдельного байта до слова целиком. Для обозначения разрядности доступа может применяться отдельная шина байт-маски (в архитектуре x86 такой приём начал применяться со времён i386 — по биту на каждый байт шины данных), либо комбинация управляющих сигналов с младшими битами шины адреса, которые в этом режиме не нужны (для 32-биной шины данных адрес слова нацело делится на 4, а потому младшие 2 бита шины адреса всегда равны нулю) — так было до выхода i386. Случай же адресации байтов возможен лишь при динамической подстройке ширины шины и из широко известных ЦП применялся только в MC68020/030. В результате к сегодняшнему дню используется именно адресация слов вместе с байт-маской, поэтому физическая разрядность шины адреса оказывается меньше её логической ширины на число бит, на единицу меньшее разрядности шины данных в байтах. Из чего следует, что 32-битная физическая шина адреса может быть только при 8-битной шине данных, на что ни один архитектор и инженер в здравом уме не пойдёт по очевидным соображениям.

Но это ещё не всё. Зачем нам вообще 32-битная физическая или логическая адресация? Середина-конец 80-х, на рынке только-только появились мегабитные микросхемы памяти, типичный объём памяти для ПК пока что измеряется сотнями килобайт, но чуть позже — мегабайтами. А 32-битная адресация позволит получить доступ к 4 ГБ физического ОЗУ! Да кому вообще такое может понадобиться в ближайшие лет 20 в персоналках?! Неудивительно, что первые популярные «32-битные» ЦП имели совсем не 32 бита логической ширины шины адреса: MC68000 имел 24 (23 физических + 1 для управления разрядами), а MC68008 — и вовсе 20. Intel 386SX (вышедший на 3 года позже оригинального полностью 32-битного i80386), помимо уполовинивания шины данных, сократил и шину адреса до 24 (23 физических) бит, а его встраиваемые версии 386EX/CX имели 26-битную шину. Более того, первые чипсеты, позволявшие оперировать 32-битными адресами, появились лишь в 90-х, а первые материнские платы, имевшие достаточное число слотов памяти, чтобы набрать >4 ГБ модулями максимального на тот момент размера — лишь в 2000-х. Хотя первые ЦП с 64-битной физической шиной адреса (IBM/Motorola PowerPC 620) появились аж в 1994 г.. Выводим

Итак, физически в процессоре вообще ничего не требуется делать 32-битным. Достаточно лишь архитектурно убедить программиста, что ЦП выполняет 32-битные операции одной командой. И хотя она при отсутствии полноценных внутренних ресурсов неизбежно будет декодироваться в цепочки микрокода для управления 16-битными физическими порциями информации и аппаратными блоками — это уже программиста не волнует. Так что же, достаточно переписать прошивку, переделать декодер и схему управления, и вот наш 16-битный процессор сразу стал 32-битным?

Как известно, любую хорошую идею можно довести до абсурда, и тогда она сама себя дискредитирует. Увеличение разрядности ЦП — не исключение. На этом месте архитектурщик сразу должен задаться вопросом — а зачем всё это? Увеличивать разрядность данных хорошо для ускорения работы с ними (часто требуется обрабатывать значения, не умещающиеся в 16 бит), а адресов — для получения возможности оперировать большими объёмами данных (ограничение в 64 КБ для 16-битной адресации, кое-как ослабленное сегментной моделью IA-16, сковывало программистов уже в середине 80-х). Можно, конечно, сделать страничную адресацию с программно переключаемыми банками (могли же 8-битные ЦП адресовать 1 МБ на популярных дешёвых ПК и игровых приставках), но ценой усложнения программ и замедления доступа к памяти. Аналогично — разве имеет смысл делать 32-битность для данных такой, что она почти не ускоряет производительность по сравнению с обработкой 32-битных чисел на 16-битной платформе под управлением программы, а не микрокода? Таким образом мы только упростим программирование, сэкономив на числе команд, но не получим скачок в скорости. Из чего мы приходим к выводу — увеличение разрядности должно реализовываться так, чтобы оно реально привело к качественному (больше памяти) и количественному (быстрее операции) скачку возможностей архитектуры. «Больше памяти» здесь относится именно к качественному развитию, т.к. многие алгоритмы и приложения вообще откажутся работать при недостатке ОЗУ, в то время как даже медленный процессор всё равно рано или поздно программу выполнит. Виртуальная память с дисковой подкачкой бессмысленна при менее чем 32-битной реализации.

Но означает ли всё это, что в ЦП как можно больше ресурсов, и аппаратных, и архитектурных, должны быть 32-битными, чтобы его можно было бы назвать полноценным 32-битным процессором? Совсем нет. Возьмём тот же MC68000 — у него 32-битная архитектура для данных и адресов и 32-битные регистры, но 16-битные АЛУ и внешняя шина данных и 24-битная физическая внешняя адресация. Тем не менее, недостаточная «32-битность» не мешает ему обгонять появившийся на 3 года позже «16-битный» 80286: на популярном в 1980-е бенчмарке Dhrystones MC68000 на 8 МГц набирает 2100 «попугаев», а 286 на 10 МГц — 1900 (также 16-битный i8088 на 4,77 МГц — 300).

Читайте также: 33 шины тойота хайлюкс сурф лифт тюнинг

Но всё это нам не поможет ответить на вопрос — что же такое разрядность процессора? В момент, когда мы уже было пришли к некоему заключению, на сцене появляется новый герой — тип данных. Всё вышеизложенное имело отношение лишь к целочисленным вычислениям и их аргументам. Но ведь есть ещё и вещественные. Кроме того, пока что мы оперируем скалярными величинами, но есть ещё и векторные. А ведь, по слухам, Intel намерена встроить вещественный сопроцессор прямо внутрь своего нового 80486 (напомню: на дворе у нас, условно — 80-е годы). С учётом того, что внутреннее физическое и архитектурное представление данных (с адресами FPU не работает) 80-битное — как же тогда называть «четвёрку» — «32/80-битным» процессором? Вернёмся обратно в настоящее — как называть Pentium MMX, который откусил 64 бита от каждого 80-битного скалярного вещественного регистра и назвал их целочисленным векторным регистром? А Pentum Pro/II с 256-битной шиной данных между кэшем L2 и ядром? (Ещё ранее MIPS R4000 и его варианты имели внутренний контроллёр L2 с внешней 128-битной шиной до самого кэша.) А как назвать Pentium III с его 128-битными регистрами XMM, хотя в каждом таком векторе могут пока храниться лишь 32-битные компоненты, а обрабатываться лишь парами в 64-битных ФУ, но не четвёрками? А как воспринимать готовящиеся сейчас для новых архитектур (в частности, Intel Larrabee) команды векторной адресации типа Scatter и Gather, где части векторного регистра воспринимаются как адреса, а не данные, и потому адресация тоже может считаться ххх-битной?

Современный спор о переходе с 32-битной на 64-битную платформу повторяет эту историю с дополнениями, ещё более подсаливающими и так разнообразное по вкусу блюдо. Прежде всего, если посмотреть на темпы удвоения разрядности (что бы под ней не понимали) однокристальных ЦП, то окажется, что переход от первых 4-битных к первым 32-битным произошёл всего за 8 лет — c 1971 г. (i4004) по 1979 г. (MC68000 и куда менее известный NS32016). Следующее удвоение до 64 бит потребовало 10 лет — i860 имел 32-битное целое скалярное АЛУ и 32-битные универсальные регистры со спариванием, но 64-битные FPU и целочисленное векторное ФУ, 64-битные внешние шины и, впервые, внутреннюю 128-битную шину ядро-кэш. А пока 64 бита добрались до ПК — прошло ещё лет 15, хотя 64-битный доступ к памяти (через 64-битную же шину данных, но для «32-битного» процессора) появился уже в первых Pentium в 1993 г.. А дело в том, что для целочисленных скалярных вычислений два главных типа операндов — данные и адреса — пока достаточно было иметь лишь 32-битными. Об избыточности 32-битной адресации для 80-90-х гг. уже сказано, но и жёсткая необходимость в 64-битных целочисленных вычислениях, в отличие от 32-битных, также до сих пор не возникала, да и не просматривается и сейчас. Для целых чисел диапазон от –2·10 9 до 2·10 9 или от 0 до 4·10 9 покрывает подавляющее большинство нужд, а редкие моменты 64-битности вполне удовлетворяются дедовским способом — операциями над частями операндов с переносом, что не так уж сильно медленнее и доступно с первых моментов появления 32-битных архитектур. Дополнительной пикантности добавляет тот факт, что 64-битная арифметика над целыми числами в архитектуре x86 появились ещё до AMD64 и EM64T, причём сразу векторная — начиная с набора SSE2 (2001 г.) существуют команды paddq и psubq для сложения и вычитания целых 64-битных компонентов, а команды 32-битного перемножения для любой архитектуры дают 64-битное число (команды деления, соответственно — его принимают; аналогично для многих 16-битных платформ, включая IA-16).

Разрядности некоторых процессоров для ПК

КритерийРазрядность
Функциональныйобработкихраненияобмена
Реализационныйфизич.архитектурн.физич.архитектурн.физич.архитектурн.
Типовой (D: данных; A: адресов)DADADADADADA
i8080/85, Z80888-1616888-16168168-1616
Z800016168-641616168-64168-16238-6423
MC68000/010 (MC68008)16168-323232328-32328-16 (8)24 (20)8-3232
MC68020/03032328-323232328-32328-32328-3232
i8086/186* (i8088/188*)16168-161616168-16168-16 (8)208-1620
i8028616168-161616168-16168-16248-1624
i80386DX32328-323232328-32328-32328-3232
i80386SX (EX/CX)32328-323232328-32328-1624 (26)8-3232
i86032/64|64328-64/64|643232/64/32328-64/64/643264648-6464
i8048632/80328-32/803232/80328-32/803232328-8032
Pentium, K5 (Pentium Pro)32/80328-32/803232/80328-32/80326432 (36)8-8032 (51)
Pentium MMX (Pentium II)32/80|64328-32/80|643232/80|64328-32/80|64326432 (36)8-8032 (51)
K6 (K6-2)32/80| 64(/64)328-32/80| 64(/64)3232/80| 64(/64)328-32/80| 64(/64)3264328-8032
Athlon32/80| 64/64328-32/80| 64/643232/80| 64/64328-32/80| 64/643264368-8051
Athlon XP32/80| 64/64328-32/80| 64/32-1283232/80|64/128328-32/80| 64/1283264368-12851
Pentium III (Pentium 4/M, Core)32/80| 64/64328-32/80| 64(+128)/32-1283232/80| 64(+128)/128328-32/80| 64(+128)/1283264368-12851
Pentium 4 D/EE (Athlon 64*)64/80| 64/64648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464(+16)408-12852
Atom32-64/80| 64/64-128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464368-12851
Core 2 (i7*)64/80| 128/128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464 (192+16)408-12852
Athlon II*, Phenom (II)*64/80| 128/128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/12864128+1640 (48)8-12852

* — Мультиплексированная шина данных и адреса (для ЦП с интегрированным контроллёром памяти — только межпроцессорная)
«A/B|C/D» — для данных указана разрядность скалярного целого / вещественного | векторного целого / вещественного доменов
«X+Y» — имеет домены этого вида двух разрядностей
«X-Y» — в зависимости от команды или ФУ принимает все промежуточные значения с целой степенью двойки

Если вы дочитали до этого места, то объявленная цель статьи, скорее всего, уже достигнута, а Идеальное Конечное Точное Определение разрядности так и не найдено. Может быть, его вообще нет, и это даже хорошо. В конце концов, если компьютер это главный инструмент для работы с информацией, то каждая IT-технология это метод улучшения работы компьютера. Разрядность сама по себе ничего не даст в отрыве от всего остального арсенала высоких инфотехнологий. PDA/коммуникаторы, мобильники, нетбуки, медиа-плееры и прочая карманная электроника, а также гигантское количество встроенных контроллёров и бортовых компьютеров отлично работают, увеличивая свою популярность и без всякой 64-битности. Так зачем тогда переходят на большие разрядности? Зачем, например, никому пока не нужная 64-битность в Intel Atom для нетбуков, где 8 ГБ памяти мало того, что никому не нужны, так ещё и за пару часов досуха выжмут батарею, а научные или экономические вычисления (где могут потребоваться 64 целых бита) никто запускать не будет? Один из возможных ответов: «потому что мы можем». Дополнительная пара миллионов транзисторов для удвоения ещё оставшихся 32-битными блоков утонет каплей в море вентилей, уже потраченных на всё остальное в этом же чипе. Галопирующий прогресс микроэлектроники как главного паровоза IT сделал интегральный транзистор таким дешёвым, что теперь лакомый для любого маркетолога шильдик «64 bit» обойдётся потребителю в десяток лишних центов, обеспечивая совсем не бутафорское, а вполне реальное ускорение на 10-50 % в 1-5 % приложений. И если мелкая овчинка стоит почти бесплатной выделки, почему нет?

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🌟 Видео

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать

    КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМ

    Принцип работы процессора на уровне ядраСкачать

    Принцип работы процессора на уровне ядра

    Системная шина процессораСкачать

    Системная шина процессора

    169 секунд и ты знаешь как работает процессорСкачать

    169 секунд и ты знаешь как работает процессор

    Всё о видеокартах за 11 минутСкачать

    Всё о видеокартах за 11 минут

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]Скачать

    04. Основы устройства компьютера. Архитектура процессора. [Универсальный программист]

    КАК РАБОТАЕТ ПРОЦЕССОР | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

    КАК РАБОТАЕТ ПРОЦЕССОР | ОСНОВЫ ПРОГРАММИРОВАНИЯ

    Просто о сложном - тактовая частота процессора (CPU Clock)Скачать

    Просто о сложном - тактовая частота процессора (CPU Clock)

    Как работает процессор: частоты, шины и т.д.Скачать

    Как работает процессор: частоты, шины и т.д.

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]Скачать

    05. Основы устройства компьютера. Регистры и команды процессора. [Универсальный программист]

    Процессор под микроскопом. Нанометровое путешествие.Скачать

    Процессор под микроскопом. Нанометровое путешествие.

    ПРОЦЕССОРЫ ARM vs x86: ОБЪЯСНЯЕМСкачать

    ПРОЦЕССОРЫ ARM vs x86: ОБЪЯСНЯЕМ

    ЛОГИКА ПРОЦЕССОРА | Магия многопоточностиСкачать

    ЛОГИКА ПРОЦЕССОРА | Магия многопоточности

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?Скачать

    Разрядность ОС и процессоров. Что лучше x64 или x32 (x86)?

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?Скачать

    х64 или х86? Как узнать разрядность процессора и архитектуру windows?

    КАК РАБОТАЕТ ПРОЦЕССОР | КАК ТРАНЗИСТОРЫ НАУЧИЛИСЬ СЧИТАТЬ?Скачать

    КАК РАБОТАЕТ ПРОЦЕССОР | КАК ТРАНЗИСТОРЫ НАУЧИЛИСЬ СЧИТАТЬ?

    ФИЗИКА вашего ПРОЦЕССОРА. Проблема предела нанометров.Скачать

    ФИЗИКА вашего ПРОЦЕССОРА. Проблема предела нанометров.

    Все о маркировках процессоров INTEL COREСкачать

    Все о маркировках процессоров INTEL CORE
Поделиться или сохранить к себе:
Технарь знаток