Релейная защита секций шин

Релейная защита секций шин Релейная защита секций шин Релейная защита секций шинРелейная защита секций шин

Специальные защиты шин предназначены для отключения без выдержки времени повреждении, возникающих на сборных шинах. На шинах могут возникать такие же повреждения, как и на линиях: однофазные и многофазные в сетях с заземленной нейтралью, многофазные в сетях с изолированной нейтралью.

В Советском Союзе имеется большой опыт эксплуатации защит шин, которые устанавливаются практически на всех станциях и подстанциях напряжением 110 кВ и выше, работающих в режиме многостороннего питания. Защиты шин используются также и в сетях менее высокого напряжения.

Видео:Курс по РЗиА. Часть 1. Логическая защита шин.Скачать

Курс по РЗиА. Часть 1. Логическая защита шин.

13-2. Дифференциальная защита шин

а) Принцип действия

Дифференциальная защита шин выполняется на тех же . принципах, что и рассмотренные выше дифференциальные защиты трансформаторов и генераторов. Токовые реле (рис. 13-2) подключаются к соединенным параллельно вторичным обмоткам трансформаторов тока, установленных на каждом присоединении. Коэффициенты трансформации всех трансформаторов тока равны.

Видео:Логическая защита шин. Принцип действия и особенностиСкачать

Логическая защита шин. Принцип действия и особенности

13-3. Защита шин генераторного напряжения

На электростанциях и подстанциях с реактированными линиями на шинах 6—10 кВ применяются специальные защиты шин, обеспечивающие быстрое отключение коротких замыканий, возникающих на шинах

Наиболее просто защита шин осуществляется с помощью неполной дифференциальной защиты, выполненной токовыми реле, включенными на сумму токов всех источников питания. На схеме рис. 13-8 токовые реле — пусковые органы защиты включены на токи генератора, трансформатора связи с системой и секционного выключателя.

Видео:Логическая защита шин (ЛЗШ)Скачать

Логическая защита шин (ЛЗШ)

Дуговая и логическая защита шин

Дуговая защита — особый вид быстродействующей защиты от коротких замыканий, основанный на регистрации спектра света открытой электрической дуги.

Значительную опасность для комплектных распределительных устройств (КРУ) напряжением 6-10 кВ представляют внутренние короткие замыкания (КЗ), сопровождаемые электрической дугой (ЭД). Температура электрической дуги может достигать значений порядка 7000 … 12000 °C за время менее одного периода промышленной частоты.

Видео:ЛОГИЧЕСКАЯ ЗАЩИТА ШИН: ЧТО ЗАЩИЩАЕТ, КАК РАБОТАЕТ, КАК РЕАЛИЗОВАНА, КАК ПРОВЕРИТЬ В РЕАЛЬНОМ ЗРУ!!Скачать

ЛОГИЧЕСКАЯ ЗАЩИТА ШИН: ЧТО ЗАЩИЩАЕТ, КАК РАБОТАЕТ, КАК РЕАЛИЗОВАНА, КАК ПРОВЕРИТЬ В РЕАЛЬНОМ ЗРУ!!

Релейная защита секций шин

Релейная защита секций шин Релейная защита секций шин Релейная защита секций шинРелейная защита секций шин

Релейная защита секций шин

Видео:РЗ #51 Дифференциальная защита шин (часть 1)Скачать

РЗ #51 Дифференциальная защита шин (часть 1)

13-1. Назначение защиты шин

Специальные защиты шин предназначены для отключения без выдержки времени повреждении, возникающих на сборных шинах. На шинах могут возникать такие же повреждения, как и на линиях: однофазные и многофазные в сетях с заземленной нейтралью, многофазные в сетях с изолированной нейтралью.

В Советском Союзе имеется большой опыт эксплуатации защит шин, которые устанавливаются практически на всех станциях и подстанциях напряжением 110 кВ и выше, работающих в режиме многостороннего питания. Защиты шин используются также и в сетях менее высокого напряжения.

Видео:[11] Дифференциальные защиты №1Скачать

[11] Дифференциальные защиты №1

13-2. Дифференциальная защита шин

а) Принцип действия

Дифференциальная защита шин выполняется на тех же . принципах, что и рассмотренные выше дифференциальные защиты трансформаторов и генераторов. Токовые реле (рис. 13-2) подключаются к соединенным параллельно вторичным обмоткам трансформаторов тока, установленных на каждом присоединении. Коэффициенты трансформации всех трансформаторов тока равны.

Видео:Релейная защита Вводная лекцияСкачать

Релейная защита Вводная лекция

13-3. Защита шин генераторного напряжения

На электростанциях и подстанциях с реактированными линиями на шинах 6—10 кВ применяются специальные защиты шин, обеспечивающие быстрое отключение коротких замыканий, возникающих на шинах

Наиболее просто защита шин осуществляется с помощью неполной дифференциальной защиты, выполненной токовыми реле, включенными на сумму токов всех источников питания. На схеме рис. 13-8 токовые реле — пусковые органы защиты включены на токи генератора, трансформатора связи с системой и секционного выключателя.

Видео:2.4 Защита 6 10 кв 2 1Скачать

2.4 Защита 6 10 кв 2 1

Дуговая и логическая защита шин

Дуговая защита — особый вид быстродействующей защиты от коротких замыканий, основанный на регистрации спектра света открытой электрической дуги.

Значительную опасность для комплектных распределительных устройств (КРУ) напряжением 6-10 кВ представляют внутренние короткие замыкания (КЗ), сопровождаемые электрической дугой (ЭД). Температура электрической дуги может достигать значений порядка 7000 … 12000 °C за время менее одного периода промышленной частоты.

Видео:Как работает Релейная защита. Или что нас спасает от Блэкаутов (НАЧАЛО)Скачать

Как работает Релейная защита. Или что нас спасает от  Блэкаутов (НАЧАЛО)

Лекция 10. РЕЛЕЙНАЯ ЗАЩИТА СБОРНЫХ ШИН

10.2 Дифференциальная защита шин

10.3 Мероприятия по повышению надежности ДЗШ

Видео:✅Для чего служит ЗОН 110кВ?Скачать

✅Для чего служит ЗОН 110кВ?

10.1 Защита шин

Повреждения на шинах подстанций электрических сетей и электростанций высокого и сверхвысокого напряжений могут быть отключены резервными РЗ, установленными на противоположной стороне элементов, подключенных к этим шинам (рис. 2.36). Однако резервные РЗ в подобных случаях работают со значительными выдержками времени t рез.з и не всегда обеспечивают селективное отключение поврежденных шин. В то же время КЗ на шинах по условиям устойчивости энергосистемы и работы потребителей требуют быстрого отключения. Характерным примером неселективного действия резервных РЗ ЛЭП может служить подстанция с двумя выключателями на каждом присоединении (рис. 2.36). При КЗ, например, на первой (7) системе шин (СШ) РЗ 1 и 2 отключают соответствено выключатели Q1 и Q2, лишая питания обе СШ (I и II), хотя при данной схеме соединений имеется возможность сохранить в работе всю подстанцию, отключив только выключатели Q3 и Q4. Такая л иквидация повреждения может быть обеспечена только с помощью специальной РЗ шин. Для прекращения КЗ на шинах их РЗ должна действовать на отключение всех присоединений, питающих шины. В связи с этим специальные РЗ шин приобретают особую ответственность, так как их неправильное действие приводит к отключению целой электростанции или подстанции либо их секций. Поэтому принцип действия РЗ шин и их практическое выполнение (монтаж) должны отличаться повышенной надежностью, исключающей возможность их ложного срабатывания.

Рисунок 10.1 – Схема подстанции с двумя выключателями на каждом присоединении. Выключатели, отключаемые защитой при КЗ на первой (I) системе шин заштрихованы

В качестве быстродействующей и селективной РЗ шин получила распространение защита, основанная на дифференциальном принципе .

Видео:Базовая логика дуговой защитыСкачать

Базовая логика дуговой защиты

10.2 Дифференциальная защита шин

Дифференциальная РЗ шин (ДЗШ) основывается на том же принципе, что и рассмотренные ранее дифференциальные РЗ ЛЭП, трансформаторов и генераторов, т. е. на сравнении значений и фаз токов, приходящих к защищаемому элементу (в данном случае к шинам ПС) и уходящих от него. Для питания ДЗШ на всех присоединениях устанавливаются ТТ с одинаковым коэффициентом трансформации Ki (независимо от мощности присоединения).

Дифференциальное реле 1 подключается к ТТ всех присоединений, так чтобы при первичных токах, направленных к шинам, в нем проходил ток, равный сумме токов всех присоединений, т. е. I р = E I пр . Тогда при внешних КЗ E I пр = 0 и реле не будет действовать, а при КЗ в зоне (на шинах) EI пр равна сумме токов КЗ, притекающих к месту повреждения, и ДЗШ работает. Первичные обмотки всех ТТ подключаются к шинам одноименными зажимами; все вторичные обмотки ТТ

соединяются параллельно одноименной полярностью, и к ним подключается реле 1.

При внешнем КЗ ток КЗ I 4 , идущий от шин к месту КЗ по поврежденной ЛЭП W4, равен сумме токов, притекающих к шинам от источников питания (по линиям W1, W2, W3):

Читайте также: Давление в шинах для газ 3110

Из токораспределения, показанного на рис. 10.1, видно, что вторичные токи I 1в , I 2в и I 3в , соответствующие первичным токам, притекающим к шинам, направлены в обмотке реле противоположно вторичному току I 4в (первичный ток которого утекает от шин).

Защита не будет действовать при условии, что ток срабатывания реле будет больше максимального тока небаланса, возникающего при Iк.max во время внешнего КЗ:

При КЗ на шинах по всем присоединениям, имеющим источники питания (генераторы), ток КЗ направляется к месту повреждения, т.е. к шинам подстанции. Вторичные токи направлены в обмотке реле одинаково, поэтому ток в реле равен их сумме:

При КЗ на шинах ДЗШ реагирует на полный ток I К в месте КЗ. Защита будет действовать, если I к > I с.з.

В нормальном режиме сумма токов, приходящих к шинам, всегда равна сумме токов, отходящих от шин, поэтому ток в реле равен нулю: / р = 0. Из-за погрешности ТТ в реле появляется ток небаланса, который невелик в нормальном режиме и увеличивается при внешнем КЗ.

Видео:Максимально токовые защитыСкачать

Максимально токовые защиты

10.3 Мероприятия по повышению надежности и чувствительности ДЗШ

Ограничение тока небаланса. Ток небаланса может вызвать неправильную работу РЗ, поэтому принимаются меры к ограничению его значения. Для уменьшения тока небаланса необходимо уменьшить разность между намагничивающим током I4нам ТТ на поврежденном присоединении, по которому проходит наибольший ток КЗ, и суммой намагничивающих токов I1нам + I2нам + I3нам остальных присоединений (W1, W2, W3). I нам ТТ зависит от значения его вторичной ЭДС Е2 (рис. 2.37). Чем больше ток КЗ, проходящий через ТТ, тем больше Е2, а следовательно, и ток Iнам. При внешнем КЗ наибольший ток проходит через ТТ поврежденного присоединения, поэтому его Iнам и погрешность максимальны.

По ТТ остальных присоединений проходит лишь часть этого тока , благодаря чему их токи намагничивания значительно меньше. Особенно неблагоприятным является такое соотношение вторичных ЭДС, при котором ТТ поврежденного присоединения работают в насыщенной части (точка 4 на рис. 2.37), а все остальные – в прямолинейной части характеристики намагничивания (точки 1, 2 и 3). При этих условиях разница токов намагничивания имеет наибольшее значение. Поэтому для уменьшения небаланса нужно обеспечить условия, при которых все ТТ работают при внешних КЗ в ненасыщенной части характеристики.

Рисунок 10.2 – Характеристика намагничивания трансформатора тока дифференциальной защиты

С этой целью необходимо: а) применять однотипные ТТ , у

которых насыщение происходит при возможно больших токах Iк; наилучшими с этой точки зрения являются ТТ класса Р(Д), которые и рекомендуется применять для ДЗШ; б) уменьшать кратность тока Iк к номинальному току ТТ, увеличивая их коэффициент трансформации К1; в) уменьшать нагрузку на ТТ, уменьшая ZH и вторичный ток Iв; первое достигается за счет увеличения сечения и сокращения длины соединительных проводов, а второе – применением одноамперных ТТ или вспомогательных трансформаторов, понижающих ток в соединительных проводах. Выбор ТТ и определение допустимой нагрузки Zн на них производится по кривым предельной кратности токов при 10 %-ной погрешности.

Отстройка дифференциальных реле от тока небаланса.

Для улучшения отстройки от повышенных токов небаланса в неустановившемся режиме, когда они могут достигать больших значений за счет влияния апериодической составляющей тока КЗ, сильно намагничивающей сердечник ТТ, в ДЗШ, так же как и в других дифференциальных РЗ, применяются реле с насыщающимися ТТ. Последние не пропускают в реле апериодическую составляющую Iнб. Защита выполняется с помощью реле типа РНТ-565 – при одинаковых коэффициентах трансформации ТТ или типа РНТ-567 – в схемах с ТТ, имеющими разные коэффициенты трансформации. Реле РНТ567 имеет две независимые рабочие обмотки W1 и W2 и выполняется в двух модификациях – на 5 и 1 А вторичного тока. Разработана схема более совершенной ДЗШ с торможением типа ДЗШТ, которая обеспечивает лучшую отстройку от 1нб при внешних КЗ и может применяться, когда простая ДЗШ не удовлетворяет требованиям чувствительности. Контроль исправности токовых цепей. В случае обрыва или шунтирования фазы вторичной цепи ТТ одного из присоединений ток от оборванной или зашунтированной фазы не поступает в дифференциальные реле, в результате чего ДЗШ может неправильно сработать и отключить всю подстанцию или электростанцию. Для предупреждения неправильной работы

ДЗШ под влиянием тока нагрузки оборванной фазы дифференциальные реле отстраиваются от тока нагрузки наиболее загруженного присоединения. Кроме того, в нулевом проводе дифференциальных реле устанавливается чувствительное токовое реле КАО, которое, срабатывая, при обрыве или шунтировании фазы вторичной цепи с выдержкой времени выводит ДЗШ из действия и подает предупредительный сигнал. Реле КАО дополняется миллиамперметром Ртп А, при помощи которого можно обнаружить не только обрыв, но и ухудшение контакта в цепи какой-нибудь фазы или витковое замыкание в ТТ, вызывающее увеличение тока небаланса в нулевом проводе.

1. Виды защит сборных шин и требования к ним.

2. Дифференциальная защита сборных шин. Выбор тока срабатывания.

3. Мероприятия по повышению надежности дифференциальной защиты шин.

4. Схемы дифференциальных защит шин.

5. Защита сборных шин с помощью отсечки и дистанционной защиты.

6. Защита сборных шин с трансформаторами тока, имеющими повышенную погрешность.

Видео:Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)Скачать

Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)

Защита шин 6-10 кВ — Принципы выполнения защиты шин 6—10 кВ

2. ПРИНЦИПЫ ВЫПОЛНЕНИЯ ЗАЩИТЫ ШИН 6—10 кВ
Как показывает опыт эксплуатации, на сборных шинах 6—10 кВ тепловых электростанций в редких случаях могут возникнуть междуфазные КЗ в результате различных повреждений на этих шинах. К причинам, вызывающим эти повреждения, относятся перекрытие шинных изоляторов, вводов выключателей, измерительных трансформаторов тока (ТТ) и напряжения, поломка изоляторов разъединителей при операциях с ними, а также ошибки дежурного персонала при переключениях в распределительном устройстве 6—10 кВ.
Однофазные КЗ на землю на сборных шинах 6—10 кВ не возникают, так как сети 6—10 кВ в СССР работают или с изолированной нейтралью генераторов и трансформаторов, или как компенсированные, и поэтому для тока повреждения отсутствует электрическая цепь с относительно малым сопротивлением. При замыкании одной из фаз на землю в сети с изолированной нейтралью через место повреждения будут проходить только емкостные токи, обусловленные напряжением и емкостью неповрежденных фаз сети. При этом напряжение поврежденной фазы по отношению к земле становится равным нулю, а напряжения двух других фаз становятся равными междуфазным напряжениям, которые в этом режиме практически не изменяются, что обеспечивает нормальную работу потребителей.
Компенсацию емкостных токов, возникающих при замыкании на землю, осуществляют с помощью дугогасящего реактора (катушки), который устанавливается в заземленной нейтрали какого-либо трансформатора, присоединенного к сборным шинам 6—10 кВ. При наличии дугогасящего реактора кроме емкостных токов в месте замыкания на землю проходят и индуктивные токи, замыкающиеся через реактор. Эти токи противоположны по фазе, и в месте повреждения остаточный ток равен их разности.
В соответствии с «Правилами устройства электроустановок» [8] допускается работа сети 6—10 кВ с замыканием на землю в течение 2 ч. В связи с этим в данном режиме не требуется автоматического отключения источников питания от сборных шин. За указанный промежуток времени дежурный персонал электрической станции принимает меры к отысканию места повреждения (по приборам контроля изоляции участков сети 6—10 кВ). При двойной системе шин, как правило, дежурный персонал переводит все присоединения с поврежденной системы шин на неповрежденную.
На сборных шинах 6—10 кВ возможны и двойные замыкания на землю, если одновременно одна фаза на сборных шинах замкнется на землю, а другая фаза — в какой- либо другой точке сети. Такое повреждение возникает при ослабленной изоляции из-за перенапряжений, появляющихся при однофазном замыкании на землю. При этом ток в месте повреждения будет примерно такой же, как при двухфазном КЗ на шинах. Такое повреждение должно быть как можно быстрее отключено с помощью соответствующей защиты.
При наличии двойной системы шин 6—10 кВ и переводе на исправную свободную систему шин всех элементов, присоединенных к системе шин с однофазным замыканием на землю, уменьшается возможность возникновения двойного замыкания на землю, приводящего к обесточению работающей системы шин.
Для отключения КЗ на сборных шинах 6—10кВ тепловых электрических станций можно использовать установленные на генераторах и трансформаторах связи максимальную токовую защиту с пуском по напряжению, действующую при трехфазных КЗ, и токовую защиту обратной последовательности, действующую при двухфазных КЗ. Однако эти защиты работают с большой выдержкой времени (до 6—8 с), что может привести к значительному увеличению размеров повреждений на шинах и к длительно-
му понижению напряжения на поврежденной и соседних неповрежденных секциях сборных шин. В связи с этим для ускорения ликвидации КЗ в ПУЭ [8] предусматривается установка специальной релейной защиты шин 6—10 кВ, которая должна действовать без выдержки времени при повреждениях на этих шинах на отключение всех присоединений, питающих поврежденные шины: генератора, трансформатора связи с энергосистемой и секционных реакторов, подключенных к поврежденной секции. Она также должна действовать на отключение линии или трансформатора собственных нужд, присоединенных к поврежденной системе шин, чтобы ускорить действие устройства автоматического включения резервного источника питания (АВР) собственных нужд.
В соответствии с [8] в качестве основной защиты сборных шин 6—10 кВ с реактированными линиями используется неполная дифференциальная токовая защита шин (ДЗШ). В отличие от полной дифференциальной токовой защиты шин, которая применяется при напряжениях шин 35—500 кВ с установкой трансформаторов тока на всех присоединениях, связанных с этими шинами, при напряжении 35 кВ — с установкой на фазах А и С, а при напряжениях 110—500 кВ — на всех трех фазах, неполная дифференциальная токовая защита шин 6—10 кВ выполняется на трансформаторах тока двух фаз (Л и С), установленных только на питающих элементах, присоединенных к рассматриваемой системе шин (генераторе, трансформаторе связи, секционном реакторе, шиносоединительном выключателе, трансформаторе собственных нужд 10/6 кВ).
Установка трансформаторов тока в цепи трансформатора собственных нужд обеспечивает отключение повреждений в нем от собственных защит трансформатора и недействие. защиты шин при этих повреждениях, поскольку они оказываются вне зоны ее действия, что позволяет сохранить в работе соответствующую систему шин.
При схеме полной дифференциальной токовой защиты шин в нормальном режиме в реле тока защиты проходит разность токов, притекающих к шинам и утекающих от них. Поскольку эти токи равны друг другу, в нормальном режиме тока в реле нет за исключением токов небаланса, обусловленных погрешностью трансформаторов тока.
При схеме неполной дифференциальной токовой защиты шин в нормальном режиме в реле протекает суммарный ток нагрузки, потребляемый отходящими линиями 6— 10 кВ. В случае повреждения на питающем элементе за
трансформаторами тока неполной дифференциальной защиты шин последняя ведет себя как обычная дифференциальная токовая защита — она не действует при внешнем коротком замыкании.
Токовые реле неполной дифференциальной защиты шин включаются на сумму вторичных токов всех питающих элементов. Трансформаторы тока отходящих линий к защите шин не подключаются. Это упрощает схему защиты. по сравнению со схемой полной дифференциальной защиты шин.
Как правило, трансформаторы тока для неполной дифференциальной токовой защиты шин 6—10 кВ выбираются с одинаковым коэффициентом трансформации, что исключает необходимость выравнивания вторичных токов на всех питающих элементах и повышает надежность защиты.
В реле тока неполной дифференциальной защиты шин 6—10 кВ проходит ток, равный геометрической сумме вторичных токов трансформаторов тока только питающих элементов; в реле проходит ток, соответствующий суммарной нагрузке. Поэтому в нормальном режиме защита шин представляет собой максимальную токовую защиту., действующую без выдержки времени на отключение всех питающих элементов в случае возникновения повреждений на шинах 6—10 кВ или на линиях до реакторов.
Неполная дифференциальная токовая защита шин не действует при КЗ в генераторе, в трансформаторе связи, а также в трансформаторе собственных нужд и за секционным реактором, так как при указанных повреждениях токи, поступающие в реле от трансформаторов тока защиты шин, уравновешиваются, как в обычной схеме полной дифференциальной защиты.
При повреждениях на отходящих линиях токи КЗ и нагрузки не балансируются, так как токи, проходящие по линиям, не влияют на работу реле, поскольку на них не установлены трансформаторы тока, которые участвовали бы в схеме защиты шин. В этом случае ток в реле тока защиты соответствует сумме токов КЗ, которые текут к месту повреждения от всех источников питания, и суммарного тока нагрузки линий. Эта особенность учитывается при выборе уставок защиты шин.
Как указано выше, в нормальном режиме в реле тока защиты проходит ток, соответствующий сумме токов, идущих от источников питания к линиям, и защита шин не срабатывает, потому что ток срабатывания выбирается большим, чем суммарный ток нагрузки линий.

Читайте также: Шины для митсубиси спейс стар

Видео:1.3 Релейная защита и автоматика ЛЭП 6 35 кВ 1Скачать

1.3 Релейная защита и автоматика ЛЭП 6 35 кВ 1

Защита шин 6—10 кВ с генераторами мощностью до 60 МВт

Защита шин 6—10 кВ с генераторами мощностью до 60 МВт в соответствии с [8] выполняется в виде неполной дифференциальной токовой защиты.
Для секционированных шин 6—10 кВ с генераторами мощностью не более 12 МВт допускается не предусматривать специальную защиту; при этом ликвидация КЗ на шинах должна осуществляться действием максимальных токовых защит генераторов.
Неполная дифференциальная токовая защита состоит из двух ступеней. Первая ступень выполняется как токовая отсечка, а при недостаточной ее чувствительности она выполняется как комбинированная отсечка по току и напряжению.
Вторая ступень защиты представляет собой чувствительную максимальную токовую защиту с выдержкой времени, которая для обеспечения отключения КЗ за линейным реактором должна иметь повышенную чувствительность. Она служит и для резервирования первой ступени защиты шин, а также защит отходящих линий 6—10 кВ.
При схеме первичных соединений элементов 6—10 кВ с двойной секционированной системой шин с фиксированным распределением элементов предусматривается неполная дифференциальная токовая защита шин в исполнении для фиксированного распределения элементов, которая обеспечивает селективное отключение поврежденной рабочей или резервной системы шин.
На электростанциях с генераторами мощностью менее 60 МВт на отходящих линиях 6—10 кВ выключатели, установленные до реакторов, не рассчитаны на отключение КЗ до реакторов. На таких линиях устанавливается не токовая отсечка с действием без выдержки времени на отключение выключателя линии, а максимальная токовая защита с выдержкой времени. Поэтому первая ступень неполной дифференциальной токовой защиты шин действует без выдержки времени при повреждениях на шинах 6—10 кВ или в начальных витках реактора линии на отключение всех питающих элементов, подключенных к защищаемым шинам.
В рассмотренных ниже схемах защиты двойной системы шин 6—10 кВ предусмотрено замедление отключения всех выключателей питающих элементов при опробовании одной из систем шин с использованием защиты шин соответствующей секции. Опробование производится с помощью включения соответствующего ШСВ, на который защита шин действует без выдержки времени в случае по- вреждений на опробуемой системе шин. При опробовании Кратковременно автоматически снимается постоянный ток в выходных реле защиты, действующих на отключение всех питающих элементов, за исключением ШСВ. Выведение указанных выходных реле из действия происходит при включении ШСВ от его ключа управления.
Если при опробовании резервной системы шин держать ключ управления ШСВ долго во включенном состоянии, то Защита шин не сможет подействовать в случае возникновения повреждения на рабочей системе шин, так как выходные реле защиты не сработают. Это является недостатком схем защиты шин, приведенных в [4]. В связи с этим были внесены соответствующие изменения в ранее разработанные схемы, позволяющие при опробовании свободной системы шин восстанавливать через заданное время цепь пуска выходных реле защиты шин.
Следует отметить, что можно использовать два способа опробования резервной системы шин 6—10 кВ включением ШСВ. Первый способ, изложенный выше, предусматривает включение ШСВ без установленной на нем защиты с использованием неполной дифференциальной защиты шин соответствующей секции 6—10 кВ. Эта защита при повреждении на опробуемой системе шин отключает без выдержки времени ШСВ и не действует на отключение питающих элементов. При исправности опробуемой системы шин ШСВ остается включенным, после чего производится перевод разъединителей присоединений на опробуемую систему шин и отключаются ранее включенные разъединители от другой системы шин.
Если освобожденная система шин подлежит ревизии или ремонту, то у ШСВ отключаются его разъединители от обеих систем шин, что дает возможность произвести его ремонт или ревизию.
При использовании вышеуказанного первого способа опробования резервной системы шин трансформаторы тока ШСВ в схеме защиты шин должны быть отсоединены от схемы защиты, что обеспечивает действие защиты шин в случае повреждения на опробуемой системе шин. Для этого следует вынуть крышку испытательного блока в цепях трансформаторов тока ШСВ, что приведет к их закорачиванию и отключению от схемы защиты шин.
При втором способе опробования резервной системы шин 6—10 кВ защита шин не используется, требуется включение собственной защиты на ШСВ и установка крышки испытательного блока в токовых цепях трансформаторов тока ШСВ для дешунтирования их и введения; в схему токовых цепей защиты шин. При этом повреждения на опробуемой системе шин будут уже вне зоны действий защиты (за трансформаторами тока ШСВ). При исправности опробуемой системы шин ШСВ остается включенным, защита на нем выводится из действия, закорачиваются его трансформаторы тока в схеме защиты шин (устанавливается крышка испытательного блока), после чего производится перевод разъединителей с рабочей системы шин на резервную.
Следует отметить, что выведение из действия защиты на ШСВ до производства операций по переводу разъединителей присоединений необходимо для предотвращения отключения ШСВ его защитой от токов нагрузки, в результате чего возможны включение и отключение разъединителями токов нагрузки при отключенном ШСВ, а это недопустимо, так как может вызвать перекрытие на шинах. В случае возникновения КЗ на шинах во время перевода разъединителей оно ликвидируется защитой шин, отключающей все питающие элементы.
При сравнении вышеуказанных способов опробования резервной системы шин видно, что использование в этом случае собственной максимальной токовой защиты, установленной на ШСВ, требует выполнения в определенной последовательности значительно большего числа операций, чем первый способ с использованием защиты шин. При втором способе возможны неправильные действия дежурного персонала, которые могут привести к отключению и включению разъединителем токов нагрузки.
В связи с этим в принятых схемах защиты шин 6—10 кВ в режиме опробования резервной системы шин используется неполная дифференциальная защита рабочей системы шин действующая без выдержки времени на отключение
Все схемы защиты шин 6—10 кВ и защит, установленных на ШСВ и секционном реакторе, имеют двухфазное двухсистемное исполнение. Трансформаторы тока защиты выбираются с одинаковым коэффициентом трансформации и устанавливаются на фазах Л и С. На этих же фазах установлены трансформаторы тока для защит других элементов в данной сети генераторного напряжения.
Заземление цепей трансформаторов тока защиты шин предусматривается в одной точке в удобном для подключения месте, обычно на панели защиты.


🎦 Видео

РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать

РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)

Для энергетиков. КРУ-6кВ и выключатель ВЭМ-6.Скачать

Для энергетиков. КРУ-6кВ и выключатель ВЭМ-6.

2.1 Релейная защита и автоматика трансформатора 20210304Скачать

2.1 Релейная защита и автоматика трансформатора 20210304

Релейное оборудование ENGARD. Релейная защита и автоматика.Скачать

Релейное оборудование ENGARD. Релейная защита и автоматика.
Поделиться или сохранить к себе:
Технарь знаток