1. Значения высоты t заплечика (буртика) и f величины фаски ступицы колеса и координаты фаски r max подшипника определяют в зависимости от диаметра ступени d по следующей таблице:
2. Диаметр d 1 выходного конца быстроходного вала, соединённого с двигателем через муфту, определить по соотношению d 1 = (0,8. 1,2) d 1( дв ) , где d 1( дв ) − диаметр выходного конца вала ротора двигателя (см. табл. 1.4).
3. Диаметры d 2 и d 4 под подшипник округлить до ближайшего стандартного диаметра внутреннего кольца подшипника d п .
4. Диаметры ступеней (кроме d 2 и d 4 ) округлить до ближайшего стандартного значения из ряда Ra40 (см. табл. 2.5).
Расчёт, как правило, начинают с быстроходного вала редуктора и подсчитанный по формуле (1) в таблице 4.1 диаметр это и есть диаметр входного конца редуктора, который округляют до рекомендуемых размеров в большую сторону. Данный диаметр необходимо также согласовать с диаметром вала выбранного электродвигателя. Диаметр вала должен быть не менее 0,7 от диаметра вала двигателя. Если у Вас, к примеру получился диаметр вала редуктора- 22 мм, а диаметр вала выбранного электродвигателя составляет –38 мм, то диаметр вала редуктора следует принять минимум 38∙0,7=26,6 мм и окончательно 28 мм. Это необходимо, чтобы затем Вы легко подобрали стандартную муфту, соединяющую двигатель с редуктором. Кроме того, электродвигатель проектировал более опытный конструктор чем Вы и большая разница в диаметрах сигнализирует о возможных ошибках в Ваших расчётах. Длину входного конца вала следует принимать (2-2,5) от диаметра, а лучше открыть каталог электродвигателей или серийных редукторов и принять ту длину, которая заложена там для данного диаметра. В этом случае гарантированно подойдёт стандартная соединяющая муфта и Вам не придётся разрабатывать свою конструкцию.
Если на выходном валу редуктора консольно установлены цепная звёздочка или шкив ремённой передачи, то расчётный минимальный диаметр по формуле (1) в таблице 4.1 будет под этой звёздочкой, а остальные пойдут на увеличение.
Видео:Прочность и жесткость валов. (Зубчатый редуктор). Часть 3: Расчетные схемы валов.Скачать
4.4. Предварительный выбор подшипников качения
В редукторах, как правило, опоры валов выполняются в виде подшипников качения. В курсовых проектах рекомендуется принимать подшипники качения серийно выпускаемые отечественной промышленностью. Достаточно полный каталог подшипников качения дан в литературе и в разделе WinData комплекса прикладных программ WinMachine .
Выбор наиболее рационального типа подшипника для данных условий работы редуктора весьма сложен и зависит от целого ряда факторов: передаваемой мощности редуктора, типа передачи, соотношения сил в зацеплении, частоты вращения внутреннего кольца подшипника, требуемого срока службы, приемлемой стоимости, схемы установки.
Предварительный выбор подшипников для каждого из валов редуктора проводят в следующем порядке:
1. В соответствии с рекомендациями табл. 4.2 определяют тип, серию и схему установки подшипников.
На первом этапе рекомендуется после определения диаметра вала под подшипники назначить по данному диаметру шарикоподшипники лёгкой или средней серии. В большинстве заданий на курсовое проектирование они проходят в дальнейших расчётах. Исключение составляют опоры вала червяка червячного редуктора, где лучше сразу назначить роликовые конические подшипники лёгкой серии в связи со значительными осевыми нагрузками.
2. По справочнику-каталогу выбирают типоразмер подшипников по величине диаметра внутреннего кольца подшипника, равного диаметру d 2 и d 4 ступеней вала под подшипники.
3. По выбранному из каталога типоразмеру определяют основные параметры подшипников: геометрические размеры \SYMBOL 45 \f «Symbol» d, D, B( T, С); динамическую С r и статическую С r 0 грузоподъёмности. Здесь D \SYMBOL 45 \f «Symbol» диаметр наружного кольца подшипника, В \SYMBOL 45 \f «Symbol» ширина шарикоподшипника; T и С \SYMBOL 45 \f «Symbol» осевые размеры конического роликоподшипника.
Читайте также: Как часто включается компрессор в холодильнике индезит
Таблица 4.2. Предварительный выбор подшипников
радиальные шариковые однорядные
при отношении осевой силы F a , действующей
на подшипник, к радиальной реакции в опоре F a / F R
при F a / F R > 0,25 – роликовые конические типа 7000
роликовые конические типа 7 000
при n 1 ≥1500 об /мин
радиально-упорные шариковые типа 46000 при n 1 ≥1500 об/мин
роликовые конические типа 7 000 или 1027000
α = 29 0
для типа 1027000
Видео:9.1 Расчет валов приводаСкачать
4.5. Эскизная компоновка редуктора
Эскизная компоновка устанавливает положение шестерни и колёса закрытой зубчатой передачи, шестерни открытой передачи и муфты относительно стенок корпуса редуктора и подшипниковых опор, определяет расстояния l Б и l Т между точками приложения реакций подшипников быстроходного и тихоходного валов, а также точки приложения сил давления от шестерни открытой передачи и муфты на расстоянии l оп и l м от точки приложения реакции ближнего подшипника (рис . 4.2).
При необходимости эскизная компоновка выполняется в соответствии с требованиями ЕСКД на миллиметровой бумаге формата А 2 или А1 карандашом в контурных линиях в масштабе 1:1 и должна содержать эскизное изображение редуктора в двух проекциях, основную надпись (см. рис.4.2 и рис. 6.1 форма 1). Эскизную компоновку редуктора рекомендуется выполнять в такой последовательности:
1. Намечают расположение проекций компоновки в соответствии с кинематической схемой привода и наибольшими размерами колёс.
2. Проводят оси проекций и осевые линии валов.
В цилиндрическом редукторе оси валов проводят на межосевом расстоянии параллельно друг другу, в коническом – под углом 90 ° .
3. Вычерчивают зубчатую передачу в соответствии с геометрическими параметрами шестерни и колеса, полученными в результате проектного расчёта. Места зацепления колёс показывают в соответствии с рис. 4.3: а – передача цилиндрическая; б – коническая.
4. Для предотвращения задевания поверхностей вращающихся колёс за внутренние стенки корпуса контур стенок проводят с зазором ∆=8…10 мм. Расстояние h M (рис. 4.2) между дном корпуса и поверхностью вершин зубьев колёс для всех типов редукторов принимают h M ≥4∆ (с целью обеспечения зоны отстоя масла).
Действительный контур корпуса редуктора зависит от его кинематической схемы, размеров деталей передач, способа транспортировки, смазки и тому подобного и определяется при разработке конструктивной компоновки.
5. Вычерчивают ступени вала на соответствующих осях в соответствии с геометрическими размерами d и l, полученными в проектном расчёте валов (см. табл. 4.1), и графическим определением конструкции валов для цилиндрического редуктора (см. рис. 4.2). Ступени валов вычерчивают в последовательности от 3-й к 1-й. При этом длина 3-й ступени l 3 получается конструктивно как расстояние между противоположными стенками редуктора или равное длине ступицы колеса.
6. На 2-й и 4-й ступенях вычерчивают контуры подшипников по размерам d, D, B ( T, С) в соответствии со схемой их установки (см. табл. 4.2). Для конических роликоподшипников h = ( D − d ) / 6.
Контуры подшипников проводят основными линиями.
7. Определяют расстояния l Б и l Т между точками приложения реакций подшипников быстроходного и тихоходного валов.
Радиальную реакцию подшипника считают приложенной в точке пересечения нормали к середине поверхности контакта наружного кольца и тела качения подшипника с осью вала (рис. 4.4):
а) для радиального подшипника точка приложения реакции лежит в средней плоскости подшипника, а расстояние между реакциями опор вала (см. рис. 4.4, в): l Т = LТ − B;
б) для радиально-упорных шарикоподшипников и конических роликовых точка приложения реакции смещается от средней плоскости подшипника и её положение определяется расстоянием a, измеренным от широкого торца наружного кольца (см. рис. 4.4, а, б):
a =0,5∙( B + d + D 2 ∙ tgα ) — для радиально-упорных однорядных шарикоподшипников;
Читайте также: Не запускается компрессор рено меган 2 кондиционера
a =0,5∙( T + d + D 2 ∙ e ) — для конических однорядных роликоподшипников.
Здесь d, D, B, T − геометрические размеры подшипников; α − угол контакта; e − коэффициент осевого нагружения.
8. Определяют точки приложения консольных сил:
а) на выходном валу силы (давления F оп ремённой или цепной передач; зацепления зубчатых передач F t oп , F a oп , F r oп ) считают приложенными к середине выходного конца l 1 вала на расстоянии l оп от точки приложения реакции ближнего подшипника (см. рис. 4.4 в).
б) на входном валу силу давления муфты F м , приложенную между полумуфтами, считают распределённой, поэтому можно принять, что точка приложения силы F м находится посередине выходного конца соответствующего вала на расстоянии l м от точки приложения реакции смежного подшипника (см. рис.4.4, а и б).
9. Проставляют на проекциях эскизной компоновки необходимые размеры.
Пример конструкции выходного вала показан на рис. 4.4, в. В одноступенчатом цилиндрическом редукторе обычно применяют зубчатое колесо с симметричной ступицей и располагают его на равных расстояниях от опор.
В индивидуальном и мелкосерийном производствах валы изготовляют ступенчатыми, снабжая буртами для упора колёс и подшипников. Во всех вариантах конструкций подшипники устанавливают «враспор». Регулировка подшипников выходного вала, как и подшипников входного вала, осуществляется установкой набора тонких металлических прокладок под фланец привертной крышки, а в конструкциях с закладной крышкой \SYMBOL 45 \f «Symbol» установкой компенсаторного кольца при использовании радиального шарикоподшипника или нажимного винта при использовании конических роликоподшипников. Валы следует конструировать по возможности гладкими , с минимальным числом уступов. В этом случае существенно сокращается расход металла на изготовление вала, что собственно важно в условиях крупносерийного производства.
Для повышения технологичности конструкции радиусы галтелей и размеры фасок на одном валу желательно принимать одинаковыми . Ширину канавок для выхода инструмента также нужно принимать одинаковой . Если на валу предусмотрено несколько шпоночных пазов, то для удобства фрезерования их располагают на одной образующей вала и выполняют одной ширины, выбранной по меньшему диаметру вала.
Видео:Кинематический и силовой расчёт привода (общая методика расчёта). Ч.1Скачать
4.6. Проверочный расчёт валов на выносливость
На практике установлено, что для валов основным видом разрушения является усталостное разрушение. Статическое разрушение, происходящее под действием случайных кратковременных перегрузок, наблюдается значительно реже. Поэтому для валов расчёт на выносливость (сопротивление усталости) является основным и заключается в определении расчётных коэффициентов запаса усталостной прочности в потенциально опасных сечениях, предварительно намеченных в соответствии с эпюрами моментов и наличием на валу концентраторов напряжений.
Расчёт валов на выносливость проводят в следующем порядке.
а) Составление расчётной схемы по чертежу вала и определение расчётных нагрузок и опорных реакций.
При составлении расчётной схемы валы рассматривают как прямые брусья, лежащие на двух шарнирных опорах. Подшипники качения, воспринимающие радиальные и осевые силы, рассматривают как шарнирно-неподвижные опоры, а подшипники, воспринимающие только радиальные силы, как шарнирно-подвижные.
Схемы приложения нагрузок могут быть разные \SYMBOL 45 \f «Symbol» создающие щадящие или наихудшие условия работы рассматриваемого вала. Основными нагрузками на валы являются силы от передач и полумуфт. На расчётных схемах эти силы, а также вращающие моменты изображают как сосредоточенные и приложенные в серединах ступицы. Влиянием силы тяжести валов и насаженных на них деталей пренебрегают. Силы трения в опорах не учитывают. На рис. 4.5 приведен пример расчетной схемы выходного вала цилиндрического зубчатого редуктора с открытой прямозубой шестерней.
Внешние силы F t , F r , F а , действующие в полюсе зацепления, приводят к оси вала и изображают раздельно в вертикальной и горизонтальной плоскостях, при этом возникают моменты пар сил – вращающий T 2 =0,5 F t 2 ∙ d 2 и изгибающий M a =0,5 F a 2 ∙ d 2 . Здесь d 2 − делительный диаметр колеса. Линейные размеры, особенности формы и конструктивные элементы вала выявляются при конструировании передач, подшипниковых узлов, муфт с учётом рекомендаций.
Уточняют расстояния между точками приложения внешних сил к валу. Систему сил, действующих на вал, доводят до равновесного состояния, достраивая реакции в опорах.
Читайте также: Положение датчика коленчатого вала nissan x trail
б) Построение эпюр изгибающих моментов в общем случае в двух взаимно перпендикулярных плоскостях и эпюры крутящих моментов проводят в следующей последовательности.
Определяют реакции в опорах из условия равновесия вала, составляя уравнения статики
Правильность определения реакций R A и R B проверяют с помощью уравнения F i ( y ) =0.
Определяют внутренние изгибающие моменты в поперечных сечениях на каждом участке вала методом сечений, составляя уравнения равновесия:
Под расчётной схемой вала строят эпюры крутящих и изгибающих моментов в вертикальной и горизонтальной плоскостях от всех действующих нагрузок. По этим эпюрам определяют результирующий изгибающий момент в любом сечении вала.
Предположительно намечают опасные сечения вала, подлежащие проверке, учитывая характер эпюр изгибающих и крутящих моментов, ступенчатую форму вала и места концентрации напряжений.
в) При расчёте коэффициента запаса усталостной прочности принимают, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения \SYMBOL 45 \f «Symbol» по отнулевому . Выбор отнулевого цикла для напряжений кручения основан на том, что большинство валов передает переменные по значению, но постоянные по направлению вращающие моменты.
Определяют амплитуду симметричного цикла нормальных напряжений при изгибе вала в опасных сечениях: σ a = σ max = M on W x и амплитуду отнулевого цикла касательных напряжений при кручении вала
где M on = M onx 2 + M ony 2 − результирующий изгибающий момент в рассматриваемом опасном сечении;
M onx и M ony − изгибающие моменты в вертикальной и горизонтальной плоскостях в данном опасном сечении, Нмм ;
Т − крутящий момент на валу, Нмм ;
W x и W p – моменты сопротивления нетто-сечения вала изгибу и кручению, соответственно, мм 3 .
Для опасных сечений определяют коэффициенты запаса усталостной прочности и сравнивают их с допускаемыми .
При совместном действии изгиба и кручения запас усталостной прочности определяют по формуле:
− запас сопротивления усталости только по изгибу.
Коэффициент запаса сопротивления усталости только по кручению берётся как меньшая величина из двух значений:
− запас сопротивления усталости только по кручению;
− коэффициент запаса прочности на кручение по пределу текучести.
Меньшее по величине значение s τ подставляют в формулу для определения суммарного запаса усталостной прочности.
В предыдущих формулах σ a и τ a − амплитуды переменных составляющих циклов напряжений, а σ m и τ m − постоянные составляющие;
σ -1 и τ -1 − пределы выносливости выбранного материала вала при симметричном цикле нагружения. Их определяют по таблицам или по приближённым формулам:
где σ в − предел прочности материала вала;
τ T − предел текучести при сдвиге;
k d и k F − масштабный фактор и фактор шероховатости поверхности;
k σ и k τ − эффективные коэффициенты концентрации напряжений при изгибе и кручении.
Ψ σ и Ψ τ − коэффициенты, корректирующие влияние постоянной составляющей цикла напряжений на сопротивление усталости;
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
🔍 Видео
Расчетная схема ведомого валаСкачать
Прочность и жесткость валов. Часть 7. Расчет на жесткость выходного вала (цилиндрическая передача).Скачать
3. Узлы зубчатых редукторов, опоры валов, расчетные схемы валов, корпуса, конструкции редукторовСкачать
6.2 Кинематический расчет приводаСкачать
Расчет вала на прочность и жесткость. Эпюра крутящих моментовСкачать
Расчет валов, каф. МеханикаСкачать
САПР Компас-3D. Расчет валаСкачать
9.4. Расчет валов и осейСкачать
расчет валов редктораСкачать
Прочность и жесткость валов. Часть 6: Эпюры моментов выходного вала (цилиндрическая передача).Скачать
APM Shaft - проектирование и расчет валовСкачать
Заказать КУРСОВУЮ РАБОТУ по ДМ детали машинСкачать
Прочность и жесткость валов. Часть 8. Расчет на прочность промежуточного вала (КЦ-редуктор).Скачать
Построение силовой схемы нагружения валовСкачать
Допуски и посадки для чайников и начинающих специалистовСкачать
Ременная передача. Урок №3Скачать