Схема две рабочие системы шин с одной обходной

При большом количестве присоединений на повышенном напряжении возможно применение схем с одиночной секционированной системой шин (см. рис. 2.3). Эта схема обладает рядом существенных недостатков, в том числе необходимостью отключения линии или источников питания на все время ремонта выключателя в их цепи. При напряжении 35 кВ отключение линии будет непродолжительным, так как длительность ремонта выключателей невелика. В этот период используется резерв по сети, чтобы обеспе­чить питание потребителей. При напряжениях 110 кВ и выше длитель­ность ремонта выключателей,

Схема две рабочие системы шин с одной обходной

Рис. 2.3. Схемы с одной системой сборных шин несекционированых (а) и секционированных (б)

особенно воздушных, возрастает и становит­ся недопустимым отключать цепь на все время ремонта, поэтому схема по рис. 2.3 применяется только для РУ 35 кВ.

Одним из важных требований к схемам на стороне высшего напряже­ния является создание условий для ревизий и опробований выключателей без перерыва работы. Этим требованиям отвечает схема с обходной систе­мой шин (рис. 2.4). В нормальном режиме обходная система шин АО на­ходится без напряжения, разъединители QSO, соединяющие линии и транс­форматоры с обходной системой шин, отключены. В схеме предусматри­вается обходной выключатель QO, который может быть присоединен к любой секции с помощью развилки из двух разъединителей. Секции в этом случае расположены параллельно друг другу. Выключатель QO мо­жет заменить любой другой выключатель, для чего надо произвести сле­дующие операции: включить обходной выключатель QO для проверки исправности обходной системы шин, отключить Q0, включить QSO, вклю­чить QO, отключить выключатель Q1, отключить разъединители QSI и QS2.

Схема две рабочие системы шин с одной обходной

Рис. 2.4. Схема с одной рабочий и обходной системами шин:

а – схема с совмещенным обходным и секционным выключателем и отделителями в цепях трансформатора; б – режим замены линейного выключателя обходным; в – схема с обходным и секционным выключателем.

После указанных операций линия получает питание через обходную си­стему шин и выключатель QO от первой секции (2.4, б). Все эти операции производятся без нарушения электроснабжения по линии, хотя они свя­заны с большим количеством переключений.

С целью экономии функции обходного и секционного выключателей могут быть совмещены. На схеме рис. 2.4, а кроме выключателя QO есть перемычка из двух разъединителей QS3 и QS4. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции В2 и также включен. Таким образом секции В1 и В2 соединены между собой через QO, QS3, QS4, и обходной выключатель выполняет функции секцион­ного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки (QS5), а затем использовать QO по его назначению. На все время ремонта линей­ного выключателя параллельная работа секций, а следовательно, и линий нарушается. В цепях трансформаторов в рассматриваемой схеме установ­лены отделители (могут устанавливаться выключатели нагрузки QW). При повреждении в трансформаторе (например, Т1) отключаются выключатели линий W1, W3 и выключатель QO. После отключения отделителя QR1 вы­ключатели включаются автоматически, восстанавливая работу линий. Та­кая схема требует четкой работы автоматики.

Схема по рис. 2.4, а рекомендуется для ВН подстанций (110 кВ) при числе присоединений (линий и трансформаторов) до шести включительно, когда нарушение параллельной работы линий допустимо и отсутствует перспектива дальнейшего развития. Если в перспективе ожидается расши­рение РУ, то в цепях трансформаторов устанавливаются выключатели. Схемы с трансформаторными выключателями могут применяться для на­пряжений 110 и 220 кВ на стороне ВН и СН подстанций [3].

При большем числе присоединений (7 — 15) рекомендуется схема с от­дельными обходным QO и секционным QB выключателями. Это позво­ляет сохранить параллельную работу линий при ремонтах выключателей (рис. 2.4, в).

В обеих рассмотренных схемах ремонт секции связан с отключением всех линий, присоединенных к данной секции, и одного трансформатора, поэтому такие схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию [3].

Читайте также: Какие лучше колеса для автомобиля шины

На электростанциях возможно применение схемы с одной секциониро­ванной системой шин по рис. 2.4, в, но с отдельными обходными выклю­чателями на каждую секцию.

г)Схема с двумя системами шин

Схемы РУ с двумя системами сборных шин являются естественным развитием схем с одной системой сборных шин. В схеме с двумя системами сборных шин и одним выключателем на цепь (рис. 2.5, а) нормально в работе находятся обе системы шин при включенном или отключен­ном (по режимным соображениям) шиносоединительном выключателе ШСВМ.

Каждое присоединение подключается (согласно принятой фиксации) к той или другой системе сборных шин, выполняющих в данном случае роль не только ремонтных, но и оперативных аппаратов, т. е. таких аппаратов, с помощью которых возможно переключение цепей с одной системы сборных шин на другую, при помощи разъединителей развилки. Эта операция выпол­няется при включенном ШСВМ[4].

При помощи ШСВМ можно отключить любое присоеди­нение, если оно по каким-либо причинам не может быть отключено «своим» выключателем. Для этого включается ШСВМ и все присоединения, кроме отключаемого, перево­дятся на одну из систем сборных шин, а отключаемое ос­тается на другой системе. Затем это присоединение вместе с системой сборных шин отключается ШСВМ.

Схема две рабочие системы шин с одной обходной

Рис. 2.5. Распределительные устройства с двумя системами сборных шин:

а — с одним выключателем на цепь; б — оперативная схема при выводе в ре­монт выключателя присоединения с установкой ремонтной перемычки; в — одна из систем сборных шин секционирована; 1 — развилка шинных разъединителей; 2 — ремонтная перемычка; 3 — выключатель присоединения отключен и выведен из схемы; 4 — присоединение секционного выключателя с реактором

Шиносоединительный выключатель используется также при выводе в ремонт выключателей присоединений. Элек­трическая цепь, выключатель которой предполагается вы­вести в ремонт, отключается, выводимый в ремонт выклю­чатель отсоединяется от шин, и далее цепь включается в работу через ШСВМ. При осуществлении этой операции от­соединенные от выключателя шины соединяются между собой специальными ремонтными перемычками из провода (рис. 2.5, б).

Схема предоставляет возможность поочередного выво­да в ремонт систем сборных шин без прекращения работы электрических цепей. Для ремонта шинных разъедините­лей отключается лишь та цепь, разъединители которой выводятся в ремонт.

При повреждении на системе сборных шин автоматиче­ски отключаются присоединения только этой системы сбор­ных шин. Для ввода присоединений в работу необходимо переключение их шинными разъединителями с поврежден­ной на оставшуюся в работе систему сборных шин. К по­тере присоединений электроустановки приводит также от­каз в работе выключателя цепи во время к.з. на ней.

Существенным недостатком схемы является отключение всей электроустановки при следующих обстоятельствах:

коротком замыкании на рабочей системе сборных шин, когда другая система сборных шин выведена в ремонт;

создании ремонтных схем, связанных с ремонтом вы­ключателей;

повреждении ШСВМ, а также не отключении его во вре­мя к. з. на одной из систем сборных шин, когда в работе находились обе системы сборных шин.

К недостаткам схемы относят увеличение в 2 раза числа шинных разъединителей и более сложное выполне­ние блокировки между выключателями и разъединителя­ми, а также между рабочими и заземляющими разъеди­нителями.

Использование шинных разъединителей в качестве опе­ративных аппаратов, несмотря на наличие блокировок, не исключает ошибочных действий персонала при переклю­чениях. Часты, например, случаи включения (отключения) шинных разъединителей под током нагрузки, включения шинных разъединителей на не снятые заземления и т. д.

Надежность схем с двумя системами сборных шин и од­ним выключателем на цепь повышается при секционирова­нии шин выключателем. Обычно секционируется одна рабо­чая система сборных шин, другая не секционируется и явля­ется резервной (рис. 2.5, в). В схеме имеются два шиносоединительных выключателя, соединяющих каждую секцию шин с резервной системой сборных шин. Это позволяет выводить в ремонт любую секцию шин путем перевода ее присоединений на резервную систему сборных шин. При необходимости возможно сохранение параллельной работы источников питания включением другого ШСВМ, который будет выполнять роль секционного выключателя.

Читайте также: Шина силовая в корпусе

Видео:Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

Д) Схемы с двумя рабочими и обходной системами шин

Для РУ 110 — 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключате­лем на цепь (рис. 2.6, а). Схема обла­дает всеми оперативными свойствами схем с двумя систе­мами сборных шин и, кроме того, предоставляет возмож­ность вывода в ремонт выключателя любой электрической цепи без перерыва в ее работе и отключения электричес­кой цепи обходным выключателем при неполадках в ра­боте выключателя цепи, когда отключение его невозможно (неисправен привод масляного выключателя, поврежден фарфор камер воздушного выключателя и т. д.).

Как правило, обе системы шин находятся в рабо­те при соответствующем фиксированном распределении всех присоедине­ний: линии W1, W3, W5 и трансформатор Т1 присоединены к первой системе шин Al, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоеденительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчи­вое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений.

Схема две рабочие системы шин с одной обходной

Рис. 2.6. Схема с двумя рабочими и обходной системами шин:

а – основная схема; б, в – вариант схем

Рассмотренная схема рекомендуется для РУ 110 — 220 кВ на стороне ВН и СН подстанций при числе присоединений 7-15 [3], а также на электростанциях при числе присоединений до 12.

Особенности схемы с двумя системами шин были рассмотрены ранее. Здесь следует отметить, что для РУ 110 кВ и выше суще­ственными становятся недостатки этой схемы:

отказ одного выключателя при аварии приводит к отключению всех ис­точников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если ис­точниками питания являются мощные блоки турбогенератор—трансфор­матор, то пуск их после сброса нагрузки на время более 30 мин может за­нять несколько часов;

повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, т. е. приводит к отключению всех присоединений;

большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

необходимость установки шиносоедипительного, обходного выключа­телей и большого количества разъединителей увеличивает затраты на со­оружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.

На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин.

На подстанциях секционируется одна система шин при U = 220 кВ при числе присоединений 12—15 или при установке трансформаторов мощ­ностью более 125 MB-А; обе системы шин 110—220 кВ секционируются при числе присоединений более 15 [3].

Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и об­ходного выключателей QOA (рис. 2.6, б). В нормальном режиме разъеди­нители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обход­ной выключатель по его прямому назначению. В схемах с большим чис­лом линий количество таких переключений в год значительно, что приво­дит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [3].

В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключа­теле теряется 50% присоединений.

Дли электростанций с мощными энергоблоками (300 МВт и более) уве­личить надежность схемы можно, присоединив источники или автотранс­форматоры связи через развилку из двух выключателей (рис. 2.6, в). Эти выключатели в нормальном режиме выполняют функции шиносоедини­тельного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.

Читайте также: Can шина в грунтах

Видео:Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)Скачать

Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)

Д) Схема с двумя рабочими и обходной системами шин

Для РУ напряжением 110 кВ и выше с большим числом присоеди­нений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 5-15, а). Как правило, в установках 110 кВ и выше применяется фиксированное распределение присоединений: линии Л1, Л2 и источник ИП1 при­соединении 1-й системе шин, линии ЛЗ, Л4 и источник питания ИП2 присоединены ко 2-й системе шин, перемычка с разъединителем Р включена и обходной выключатель служит одновременно шиносоединительным (ШСОВ).

При необходимости использования ШСОВ по прямому назначе­нию надо отключить его, разделив тем самым рабочие системы шин, затем отключить разъединитель Р и воспользоваться обходным вы­ключателем

Если размыкание шин недопустимо вследствие возможности на­рушения параллельной работы источников питания, то предвари­тельно переводят все присоединения на одну систему шин. Чем боль­ше присоединений к сборным шинам, тем больше операций необхо­димо произвести для освобождения обходного выключателя и тем большее время он будет занят для замены выключателей присоеди­нений, поэтому отказ от отдельного шиносоединительного выклю­чателя допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт 5.

е) Схемас двумя системами шин и тремя выключателями на две цепи

Враспределительных устройствах 330—500 кВ применяется схе­ма с двумя системами шин и тремя выключателями на две цепи. Как видно из рис. 5-16, на шесть присоединений необходимо девять выключателей, т. е. на каждое присоединение «полтора» выключа­теля (отсюда происходит второе название схемы: «полуторная» или «схема с 3/2 выключателями на цепь»).

Каждое присоединение включено через два выключателя. Для отключения линии Л1 необходимо отключить выключатели В1, В2, для отключения, трансформатора Т1 — В2, ВЗ.

В нормальном режиме все вы­ключатели включены, обе систе­мы шин находятся под напряже­нием. Для ревизии любого вы­ключателя отключают его разъ­единители, установленные по обе стороны выключателя. Количе­ство операций для вывода в ре­визию — минимальное, разъеди­нители служат только для отде­ления выключателя при ремон­те, никаких оперативных пере­ключений ими не производят. Достоинством схемы является то, что при ревизии любого вы­ключателя все присоединения ос­таются в работе. Другим до­стоинством полуторной схемы является высокая ее надежность,

так как все цепи остаются в работе даже при повреждении на сбор­ных шинах. Так, например, при к. з. на первой системе шин отклю­чатся выключатели ВЗ, В6, В9, шины останутся без напряжения, но все присоединения сохранятся в работе. При равенстве числа источников питания и линий работа всех цепей сохраняется даже при отключении обеих систем шин; при этом может лишь на­рушиться параллельная работа на стороне повышенного напря­жения.

Схема позволяет в рабочем режиме без операций разъедините­лями производить опробование выключателей. Ремонт шин, очистка изоляторов, ревизия шинных разъединителей производится без нарушения работы цепей (отключается соответствующий ряд шин­ных выключателей), все цепи продолжают работать параллельно через оставшуюся под напряжением систему шин.

Схема две рабочие системы шин с одной обходной

ж) Схема с двумя системами шин и с четырьмя выключателями на три цепи

В схеме на рис. 5-17, ана девять присоединений требуется 12 выключателей, т. е. на каждое присоединение 4/3 выключателя. Наилучшие показатели схема имеет, если число линий в 2 раза меньше или больше числа трансформаторов.

Схема с 4/3 выключателя на присоединение имеет все достоинства полуторной схемы и кроме того:

схема более экономична (1,33 выключателя на присоединение вместо 1,5);

секционирование сборных шин требуется только при 15 присое­динениях и более;

Схема две рабочие системы шин с одной обходной

надежность схемы практически не снижается, если в одной из цепочек будут присоединены две линии и один трансформатор вместо двух трансформаторов и одной линии;

конструкция ОРУ по рассмотренной схеме достаточно экономич­на и удобна в обслуживании, если принять компановку с двухрядным расположением выключателей (рис. 5-17, б) 5.

Схема находит применение в РУ 330—500 кВ мощных КЭС.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле


    📺 Видео

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШ

    Лапидус А.В. Оперативные переключения глазами релейщика.Скачать

    Лапидус А.В. Оперативные переключения глазами релейщика.

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШ

    Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать

    Электрические подстанции #2 - Виды главных схем распределительных устройств

    ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать

    ЭСиПСТ Лекция 4 - Схемы распределительных устройств

    РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать

    РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)

    Лапидус А.А. Схема распределительных устройств (РУ): квадратСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): квадрат

    2-КТП Комплектная трансформаторная подстанцияСкачать

    2-КТП Комплектная трансформаторная подстанция

    Лапидус А.А. Схемы подстанцийСкачать

    Лапидус А.А. Схемы подстанций

    Лапидус А.А. Схема распределительных устройств (РУ): 3/2Скачать

    Лапидус А.А. Схема распределительных устройств (РУ): 3/2

    3.1 ДЗШ 110 кВ УРОВ 110 кВ 1Скачать

    3.1 ДЗШ 110 кВ  УРОВ 110 кВ 1

    ✅Для чего служит ЗОН 110кВ?Скачать

    ✅Для чего служит ЗОН 110кВ?

    РЗ #52 Дифференциальная защита шин (часть 2)Скачать

    РЗ #52 Дифференциальная защита шин (часть 2)

    РЗ #51 Дифференциальная защита шин (часть 1)Скачать

    РЗ #51 Дифференциальная защита шин (часть 1)

    Однолинейная схема электроснабжения предприятия. Часть 2.Скачать

    Однолинейная схема электроснабжения предприятия. Часть 2.

    Модель подстанцииСкачать

    Модель подстанции

    Однолинейные схемыСкачать

    Однолинейные схемы

    РЗ #53 Дифференциальная защита шин (часть 3)Скачать

    РЗ #53 Дифференциальная защита шин (часть 3)
Поделиться или сохранить к себе:
Технарь знаток