Схема двойная система шин с обходной

Видео:Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 1СШ+ОСШ

Двойная система сборных шин с обходной системой сборных шин

Особенностью схемы является секционирование сборных шин и использование шинных разъединителей 2 в качестве оперативных аппаратов. Схема предусматривает вывод в ремонт любого выключателя присоединения ВЛ и трансформаторов за счет существования обходной системы шин (ОСШ) и выключателя обходной системы шин (ОВ). К сборным шинам 11 подключены измерительные трансформаторы напряжения 6, показанные на рис. 8.1.

В дальнейшем, на последующих схемах заполнения, измерительные трансформаторы напряжения 6 могут не показываться, хотя составляют необходимую принадлежность распределительного устройства. Аналогичные изменения произошли и в системе высокочастотной блокировки (ВЧ) в фазах линий 110-750 кВ: ВЧ блокировка показана не на всех схемах заполнения, хотя составляет необходимую принадлежность ВЛ.

Схема двойная система шин с обходнойРис. 8.1. Двойная секционированная система сборных шин с обходной сборной шиной

Расширение схемы возможно за счет увеличения числа ячеек. Отмечаются трудности в осуществлении блокировок от неправильных действий с шинными разъединителями 2.

Данная схема получила широкое распространение в главных схемах электрических станций благодаря хорошему показателю n на присоединение. Широко используется и для современных станций с агрегатами большой мощности – в качестве ОРУ-СН при напряжениях 500/220 кВ и 330/110 кВ и 220/110 кВ.

Применительно к схеме заполнения рис. 8.1 определяем число выключателей на одно присоединение:

n = выключателей на присоединение.

Столь значительное повышение показателя n над значением 1,0 объясняется установкой дополнительных выключателей: секционного (С), шиносоединительного (ШСВ) и обходного (ОВ) на каждой из систем шин. При большем числе присоединений n будет стремиться к 1,0. Эти схемы широко используются в традиционной энергетике при использовании воздушных и масляных выключателей.

Появление блоков большой мощности (блоков на СКД мощностью 300, 500 и 800 МВт, блоков АЭС с реакторами 1000 и 1200 МВт, гидростанций с агрегатами мощностью до 640 МВт) потребовало изменить подход к главным схемам электрических соединений. Снизить габариты распределительных устройств, произвести замену выключателей воздушного типа и масляных на более совершенные элегазовые выключатели и перейти к созданию комплектных распределительных устройств с элегазовой изоляцией (КРУЭ). Учитывая высокую надежность элегазовых распределительных устройств, последние выполняются по упрощенным главным схемам, то есть с отказом от обходной системы шин (ОСШ), от секционирования сборных шин и от выключателей обходной системы шин.

Двойная система сборных шин с обходной системой сборных шин применяется на напряжениях 110-220 кВ при необходимости ремонта выключателей и сборных шин без перерыва питания присоединений.

Кольцевые схемы

Пример кольцевой схемы на рис. 8.2 изображен по данным работ [14] ОАО «Ленгидропроект», которое является генеральным проектировщиком Бурейской ГЭС, расположенной в Амурской области на р. Бурее. На ГЭС установлены шесть гидрогенераторов мощностью 335 МВт, работающих через повышающие трансформаторы на распределительные устройства 220 и 500 кВ.

Схема двойная система шин с обходной

Рис. 8.2. Главная схема Бурейской ГЭС

Первый и второй генераторы выдают мощность в систему 220 кВ по двум высоковольтным линиям через РУ, построенное по схеме «двойная система сборных шин с обходной системой шин».

Остальные четыре генератора в составе двух сдвоенных блоков работают на сеть 500 кВ, связь с которой осуществляется по трем ВЛ-500 кВ с глухим присоединением шунтирующих реакторов.

Читайте также: Корейские зимние шины в новосибирске

Распределительное устройство 500 кВ построено по схеме «шестиугольник» с однорядной установкой выключателей. При «шестиугольнике», и при ином числе углов (треугольник, четырехугольник, пятиугольник) обеспечивается возможное наименьшее число выключателей. Особенностями схемы 500 кВ являются: избирательное отключение при повреждении на присоединении и необходимость держать «шестиугольник» замкнутым, что осуществляется за счет наличия выходного разъединителя присоединения.

Распределительное устройство 500 кВ выполнено в виде КРУЭ производства концерна «АВВ» (Швейцария). Впервые в отечественной практике применено элегазовое распределительное устройство вместо первоначально предусмотренного ОРУ-500 кВ по схеме 3/2.

С распредустройством 500 кВ два укрупненных блока связаны высоковольтными кабелями 500 кВ с изоляцией из сшитого полиэтилена взамен воздушных переходов с прокладкой его в кабельном туннеле в шахте, запроектированных ранее для связи распределительных устройств 220 и 500 кВ со зданием ГЭС. Выполнение этих переходов по первоначальной проектной схеме мешало ходу строительных работ. В результате ввод блоков 500 кВ по первоначальной проектной схеме мог быть осуществлен только после возведения постоянных напорных водоводов и завершения работ по плотине. В отечественной практике применение кабеля 500 кВ с сухой изоляцией осуществлено впервые [15].

Распредустройства 220 и 500 кВ связаны через группу однофазных автотрансформаторов 167 МВА на фазу.

Показатель n = 1,0 независимо от числа углов многоугольника.

Дата добавления: 2018-04-04 ; просмотров: 761 ; Мы поможем в написании вашей работы!

Видео:РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)Скачать

РУ 110-220 кВ со сборными шинами (схемы 110-9, 13, 13Н)

Д) Схемы с двумя рабочими и обходной системами шин

Для РУ 110 — 220 кВ с большим числом присоединений применяется схема с двумя рабочими и обходной системами шин с одним выключате­лем на цепь (рис. 2.6, а). Схема обла­дает всеми оперативными свойствами схем с двумя систе­мами сборных шин и, кроме того, предоставляет возмож­ность вывода в ремонт выключателя любой электрической цепи без перерыва в ее работе и отключения электричес­кой цепи обходным выключателем при неполадках в ра­боте выключателя цепи, когда отключение его невозможно (неисправен привод масляного выключателя, поврежден фарфор камер воздушного выключателя и т. д.).

Как правило, обе системы шин находятся в рабо­те при соответствующем фиксированном распределении всех присоедине­ний: линии W1, W3, W5 и трансформатор Т1 присоединены к первой системе шин Al, линии W2, W4, W6 и трансформатор Т2 присоединены ко второй системе шин А2, шиносоеденительный выключатель QA включен. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений. Если повреждение на шинах устойчи­вое, то отключившиеся присоединения переводят на исправную систему шин. Перерыв электроснабжения половины присоединений определяется длительностью переключений.

Схема двойная система шин с обходной

Рис. 2.6. Схема с двумя рабочими и обходной системами шин:

а – основная схема; б, в – вариант схем

Рассмотренная схема рекомендуется для РУ 110 — 220 кВ на стороне ВН и СН подстанций при числе присоединений 7-15 [3], а также на электростанциях при числе присоединений до 12.

Особенности схемы с двумя системами шин были рассмотрены ранее. Здесь следует отметить, что для РУ 110 кВ и выше суще­ственными становятся недостатки этой схемы:

Читайте также: Шины pirelli suv 215 65 r16

отказ одного выключателя при аварии приводит к отключению всех ис­точников питания и линий, присоединенных к данной системе шин, а если в работе находится одна система шин, отключаются все присоединения. Ликвидация аварии затягивается, так как все операции по переходу с одной системы шин на другую производятся разъединителями. Если ис­точниками питания являются мощные блоки турбогенератор—трансфор­матор, то пуск их после сброса нагрузки на время более 30 мин может за­нять несколько часов;

повреждение шиносоединительного выключателя равноценно КЗ на обеих системах шин, т. е. приводит к отключению всех присоединений;

большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ;

необходимость установки шиносоедипительного, обходного выключа­телей и большого количества разъединителей увеличивает затраты на со­оружение РУ.

Некоторого увеличения гибкости и надежности схемы можно достичь секционированием одной или обеих систем шин.

На ТЭС и АЭС при числе присоединений 12-16 секционируется одна система шин, при большем числе присоединений — обе системы шин.

На подстанциях секционируется одна система шин при U = 220 кВ при числе присоединений 12—15 или при установке трансформаторов мощ­ностью более 125 MB-А; обе системы шин 110—220 кВ секционируются при числе присоединений более 15 [3].

Если сборные шины секционированы, то для уменьшения капитальных затрат возможно применение совмещенных шиносоединительного и об­ходного выключателей QOA (рис. 2.6, б). В нормальном режиме разъеди­нители QS1, QSO, QS2 включены и обходной выключатель выполняет роль шиносоединительного. При необходимости ремонта одного выключателя отключают выключатель QOA и разъединитель QS2 и используют, обход­ной выключатель по его прямому назначению. В схемах с большим чис­лом линий количество таких переключений в год значительно, что приво­дит к усложнению эксплуатации, поэтому имеются тенденции к отказу от совмещения шиносоединительного и обходного выключателей [3].

В схеме с секционированными шинами при повреждении на шинах или при КЗ в линии и отказе выключателя теряется только 25 % присоединений (на время переключений), однако при повреждении в секционном выключа­теле теряется 50% присоединений.

Дли электростанций с мощными энергоблоками (300 МВт и более) уве­личить надежность схемы можно, присоединив источники или автотранс­форматоры связи через развилку из двух выключателей (рис. 2.6, в). Эти выключатели в нормальном режиме выполняют функции шиносоедини­тельного. При повреждении на любой системе шин автотрансформатор остается в работе, исключается возможность потери обеих систем шин.

Видео:Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШСкачать

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

Д) Схема с двумя рабочими и обходной системами шин

Для РУ напряжением 110 кВ и выше с большим числом присоеди­нений широко применяется схема с двумя рабочими и обходной системами шин с одним выключателем на цепь (рис. 5-15, а). Как правило, в установках 110 кВ и выше применяется фиксированное распределение присоединений: линии Л1, Л2 и источник ИП1 при­соединении 1-й системе шин, линии ЛЗ, Л4 и источник питания ИП2 присоединены ко 2-й системе шин, перемычка с разъединителем Р включена и обходной выключатель служит одновременно шиносоединительным (ШСОВ).

При необходимости использования ШСОВ по прямому назначе­нию надо отключить его, разделив тем самым рабочие системы шин, затем отключить разъединитель Р и воспользоваться обходным вы­ключателем

Читайте также: Всесезонные шины r15 195х65

Если размыкание шин недопустимо вследствие возможности на­рушения параллельной работы источников питания, то предвари­тельно переводят все присоединения на одну систему шин. Чем боль­ше присоединений к сборным шинам, тем больше операций необхо­димо произвести для освобождения обходного выключателя и тем большее время он будет занят для замены выключателей присоеди­нений, поэтому отказ от отдельного шиносоединительного выклю­чателя допустим при числе присоединений не более семи и мощности агрегатов меньше 160 МВт 5.

е) Схемас двумя системами шин и тремя выключателями на две цепи

Враспределительных устройствах 330—500 кВ применяется схе­ма с двумя системами шин и тремя выключателями на две цепи. Как видно из рис. 5-16, на шесть присоединений необходимо девять выключателей, т. е. на каждое присоединение «полтора» выключа­теля (отсюда происходит второе название схемы: «полуторная» или «схема с 3/2 выключателями на цепь»).

Каждое присоединение включено через два выключателя. Для отключения линии Л1 необходимо отключить выключатели В1, В2, для отключения, трансформатора Т1 — В2, ВЗ.

В нормальном режиме все вы­ключатели включены, обе систе­мы шин находятся под напряже­нием. Для ревизии любого вы­ключателя отключают его разъ­единители, установленные по обе стороны выключателя. Количе­ство операций для вывода в ре­визию — минимальное, разъеди­нители служат только для отде­ления выключателя при ремон­те, никаких оперативных пере­ключений ими не производят. Достоинством схемы является то, что при ревизии любого вы­ключателя все присоединения ос­таются в работе. Другим до­стоинством полуторной схемы является высокая ее надежность,

так как все цепи остаются в работе даже при повреждении на сбор­ных шинах. Так, например, при к. з. на первой системе шин отклю­чатся выключатели ВЗ, В6, В9, шины останутся без напряжения, но все присоединения сохранятся в работе. При равенстве числа источников питания и линий работа всех цепей сохраняется даже при отключении обеих систем шин; при этом может лишь на­рушиться параллельная работа на стороне повышенного напря­жения.

Схема позволяет в рабочем режиме без операций разъедините­лями производить опробование выключателей. Ремонт шин, очистка изоляторов, ревизия шинных разъединителей производится без нарушения работы цепей (отключается соответствующий ряд шин­ных выключателей), все цепи продолжают работать параллельно через оставшуюся под напряжением систему шин.

Схема двойная система шин с обходной

ж) Схема с двумя системами шин и с четырьмя выключателями на три цепи

В схеме на рис. 5-17, ана девять присоединений требуется 12 выключателей, т. е. на каждое присоединение 4/3 выключателя. Наилучшие показатели схема имеет, если число линий в 2 раза меньше или больше числа трансформаторов.

Схема с 4/3 выключателя на присоединение имеет все достоинства полуторной схемы и кроме того:

схема более экономична (1,33 выключателя на присоединение вместо 1,5);

секционирование сборных шин требуется только при 15 присое­динениях и более;

Схема двойная система шин с обходной

надежность схемы практически не снижается, если в одной из цепочек будут присоединены две линии и один трансформатор вместо двух трансформаторов и одной линии;

конструкция ОРУ по рассмотренной схеме достаточно экономич­на и удобна в обслуживании, если принять компановку с двухрядным расположением выключателей (рис. 5-17, б) 5.

Схема находит применение в РУ 330—500 кВ мощных КЭС.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    🔥 Видео

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): 1СШ

    Лапидус А.А. Схема распределительных устройств (РУ): 3/2Скачать

    Лапидус А.А. Схема распределительных устройств (РУ): 3/2

    Электрические подстанции #2 - Виды главных схем распределительных устройствСкачать

    Электрические подстанции #2 - Виды главных схем распределительных устройств

    ЭСиПСТ Лекция 4 - Схемы распределительных устройствСкачать

    ЭСиПСТ Лекция 4 - Схемы распределительных устройств

    Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)Скачать

    Одна, секционированная выключателем, система шин 6-10 кВ (схема 6(10)-1)

    Лапидус А.А. Схема распределительных устройств (РУ): квадратСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): квадрат

    Модель подстанцииСкачать

    Модель подстанции

    Лапидус А.А. Схема распределительных устройств (РУ): 2СШСкачать

    Лапидус А.А. Схема распределительных устройств (РУ): 2СШ

    Защита Курсового Проекта - ПС 330/110/35/10кВСкачать

    Защита Курсового Проекта - ПС 330/110/35/10кВ

    Задание №2: Ввод в работу ВЛ110кВ №118ИСкачать

    Задание №2: Ввод в работу ВЛ110кВ №118И

    Лапидус А.В. Оперативные переключения глазами релейщика.Скачать

    Лапидус А.В. Оперативные переключения глазами релейщика.

    ✅Для чего служит ЗОН 110кВ?Скачать

    ✅Для чего служит ЗОН 110кВ?

    3.1 ДЗШ 110 кВ УРОВ 110 кВ 1Скачать

    3.1 ДЗШ 110 кВ  УРОВ 110 кВ 1

    Лапидус А.А. Схемы подстанцийСкачать

    Лапидус А.А. Схемы подстанций

    Лапидус А.А. Главные схемы станций.Скачать

    Лапидус А.А. Главные схемы станций.

    Вывод ремонт секции шин.Скачать

    Вывод ремонт секции шин.

    Лекция 304 Шинный формировательСкачать

    Лекция 304 Шинный формирователь
Поделиться или сохранить к себе:
Технарь знаток