Схема гту с компрессором

Устройство газовой турбины и компрессора газотурбинной установки

Схема гту с компрессором

Рис. Простейшая турбина

Газовая турбина представляет собой тепловой двигатель, в котором потенциальная энергия газа преобразуется в механическую энергию.

Продольный разрез простейшей газовой турбины показан на рисунке. На вал насажен диск 2, в котором укреплены рабочие лопатки 4. Вал с диском и лопатками в сборе называют ротором. Ротор турбины расположен внутри корпуса 5 и опирается на подшипники скольжения 6. Газ поступает к ротору турбины через сопла, образованные сопловыми лопатками 3. Сопла предназначены для преобразования потенциальной энергии газа в кинетическую. Внутри сопла давление газа уменьшается, а его скорость увеличивается. Перегородки, разделяющие сопла, называют сопловыми лопатками, а все сопловые лопатки, расположенные на одной окружности, — сопловой решеткой.

После сопловой решетки газ поступает к рабочим лопаткам. Промежутки между рабочими лопатками называют рабочими каналами, а все рабочие лопатки на диске — рабочей решеткой. Сопловую решетку и расположенную за ней по ходу газа рабочую решетку называют степенью. Рабочие лопатки изготовлены так, что каналы между ними имеют определенную форму. За счет изменения количества движения газа в рабочих каналах часть его энергии преобразуется в механическую, заставляя вращаться ротор. Ротор соединяется с потребителем механической энергии, которым на электрических станциях является электрический генератор, а на газоперекачивающих — нагнетатель газа.

Поступает газ в турбину через входной патрубок 9, а уходит из нее отработавший газ через выхлопной патрубок 8. Корпус турбины состоит из входного и выхлопного патрубков и той части, где расположены сопловые и рабочие лопатки. Таким образом корпус отделяет газ повышенного давления от окружающей среды. Однако в местах выхода ротора из корпуса имеются зазоры, и чтобы предотвратить утечку газа, в корпусе устанавливают уплотнения 7. Корпус турбины внутри или снаружи обязательно покрывают теплоизоляцией.

Компрессор служит для сжатия газа (воздуха) и повышения его энергии и температуры. При малых степенях сжатия в ГТУ в основном используют осевые компрессоры.

Простейший одноступенчатый компрессор состоит из тех же элементов, что и простейшая турбина. Так же как и турбина, компрессор имеет ротор состоящий из вала 1, диска 2 и рабочих лопаток 4. На внутренней поверхности корпуса компрессора располагаются направляющие лопатки 3. Решетку направляющих лопаток и следующую за ней рабочую решетку называют ступенью компрессора.

Воздух засасывается в компрессор через входной патрубок 9. Каналы между направляющими и рабочими лопатками имеют такую форму, что скорость воздуха в них уменьшается, а давление растет. Чтобы производилась работа сжатия воздуха, от турбины отбирается значительная часть мощности, необходимой для вращения ротора компрессора.

Выхлопной патрубок 8 (диффузор) служит для вывода воздуха из компрессора. Давление воздуха за диффузором значительно выше, чем во входном патрубке, и является наибольшим давлением в ГТУ.

Корпус компрессора состоит из входного патрубка, цилиндрической части, в которой расположены направляющие лопатки, и диффузора. Так же как в турбине, в местах выхода ротора из корпуса компрессора располагаются уплотнения 7. Турбины и компрессоры, имеющие одну ступень, называют одноступенчатыми. Турбины и компрессоры большой мощности с одной ступенью сконструировать обычно не удается. В этом случае на роторе приходится располагать несколько ступеней одну за другой. Такие турбины и компрессоры называют многоступенчатыми.

Видео:ГТУ. Турбина в работе.Скачать

ГТУ. Турбина в работе.

Газотурбинные установки (ГТУ).
Принципиальные схемы.

Видео:Центробежный компрессорСкачать

Центробежный компрессор

Принципиальные схемы газотурбинных установок

Схема гту с компрессором

Рисунок 1 — Схема ГТУ с одновальным ГТД простого цикла
1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — нагрузка

Схема гту с компрессором

Рисунок 2 — Схема ГТУ с одновальным ГТД регенеративного цикла
1 — регенератор или рекуператор; 2 — камера сгорания; 3 — компрессор;
4 — турбина; 5 — нагрузка

Схема гту с компрессором

Рисунок 3 — Схема ГТУ с многовальным ГТД простого цикла
со свободной силовой турбиной

1 — камера сгорания; 2 — компрессор; 3 — турбина;
4 — силовая турбина; 5 — нагрузка

Примечание — Пунктиром показана альтернативная
двухкаскадная компоновка ГТД

Схема гту с компрессором

Рисунок 4 — Схема ГТУ с многовальным ГТД сложного цикла
(с промежуточным охлаждением и промежуточным подогревом)

1 — основная камера сгорания; 2 — компрессор высокого давления;
3 — турбина высокого давления; 4 — промежуточный охладитель;
5 — камера сгорания промежуточного подогрева; 6 — компрессор низкого давления;
7 — турбина низкого давления; 8 — нагрузка

Примечание — Отбор мощности от ГТД осуществляется
с вала ротора низкого давления

Схема гту с компрессором

Рисунок 5 — Схема ГТУ с одновальным ГТД с отборами воздуха и горячего газа

1 — камера сгорания; 2 — компрессор; 3 — турбина; 4 — нагрузка

Схема гту с компрессором

Рисунок 6 — Схема ГТУ с одновальным ГТД замкнутого цикла

1 — предварительный охладитель; 2 — подогреватель рабочего тела;
3 — компрессор низкого давления; 4 — компрессор высокого давления;
5 — турбина; 6 — нагрузка; 7 — промежуточный охладитель

Видео:ГАЗОВАЯ ТУРБИНА || ⏱ Что это? Зачем это?Скачать

ГАЗОВАЯ ТУРБИНА || ⏱ Что это? Зачем это?

Принцип действия газотурбинных установок (ГТУ)

Видео:ГАЗОТУРБИННЫЕ УСТАНОВКИ | ПРИНЦИП РАБОТЫ | РАБОЧИЕ ЦИКЛЫСкачать

ГАЗОТУРБИННЫЕ УСТАНОВКИ | ПРИНЦИП РАБОТЫ | РАБОЧИЕ ЦИКЛЫ

Принцип действия газотурбинных установок

Схема гту с компрессором

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо — газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля — термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля — в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Схема гту с компрессором

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1—2 Изоэнтропическое сжатие.
  • 2—3 Изобарический подвод теплоты.
  • 3—4 Изоэнтропическое расширение.
  • 4—1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1—2p—3—4p—1 на T-S диаграмме)(рис.3)

Схема гту с компрессором

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1—2—3—4—1)
Реального (1—2p—3—4p—1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

Схема гту с компрессором

  • где П = p2 / p1 — степень повышения давления в процессе изоэнтропийного сжатия (1—2);
  • k — показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

Схема гту с компрессором

  • где T1 — температура холодильника;
  • T2 — температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Схема гту с компрессором

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Читайте также: Шкаф от шума для компрессоров

Схема гту с компрессором

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина — с частотой около 100000 об/мин.

Видео:Видеолекция 4. Компрессоры ГТУСкачать

Видеолекция 4. Компрессоры ГТУ

Устройство современной газотурбинной установки (ГТУ)

Видео:Как работает центробежный газовый компрессорСкачать

Как работает центробежный газовый компрессор

Устройство современной стационарной высокотемпературной ГТУ

Традиционная современная газотурбинная установка (ГТУ) — это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Необходимо подчеркнуть одно важное отличие ГТУ от ПТУ. В состав ПТУ не входит котел, точнее котел рассматривается как отдельный источник тепла; при таком рассмотрении котел — это «черный ящик»: в него входит питательная вода с температурой tп.в, а выходит пар с параметрами р0, t0. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ камера сгорания — это ее неотъемлемый элемент. В этом смысле ГТУ — самодостаточна.

Газотурбинные установки отличаются чрезвычайно большим разнообразием, пожалуй, даже большим, чем паротурбинные. Ниже рассмотрим наиболее перспективные и наиболее используемые в энергетике ГТУ простого цикла.

Схема гту с компрессором

Принципиальная схема такой ГТУ показана на рис.1. Воздух из атмосферы поступает на вход воздушного компрессора, который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором рb к давлению перед ним рa называется степенью сжатия воздушного компрессора. Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две (как на рис.1) или более камер сгорания. При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подается топливо (газ или жидкое топливо). При сжигании топлива образуются продукты сгорания топлива высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их обычно называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рабочие газы с давлением рс (рс

Для изображения схем ГТУ применяют условные обозначения, подобные тем, которые используют для ПТУ (рис.2).

Из рассмотрения рис.1 и 2 становится ясным, почему описанная ГТУ называется ГТУ простого термодинамического цикла. Более простой ГТУ быть не может, так как она содержит минимум необходимых компонентов, обеспечивающих последовательные процессы сжатия, нагрева и расширения рабочего тела: один компрессор, одну или несколько камер сгорания, работающих в одинаковых условиях, и одну газовую турбину. Наряду с ГТУ простого цикла, существуют ГТУ сложного цикла, которые могут содержать несколько компрессоров, турбин и камер сгорания. В частности, к ГТУ этого типа относятся ГТ-100-750, строив¬шиеся в СССР в 70-е годы (рис.3).

Схема гту с компрессором

Она выполнена двухвальной. На одном валу расположены компрессор высокого давления КВД и приводящая его турбина высокого давления ТВД; этот вал имеет переменную частоту вращения. На втором валу расположены турбина низкого давленияТНД, приводящая компрессор низкого давления КНД и электрический генератор ЭГ; поэтому этот вал имеет постоянную частоту вращения 50 с-1. Воздух в количестве 447 кг/с поступает из атмосферы в КНД и сжимается в нем до давления примерно 430 кПа (4,3 ат) и затем подается в воздухоохладитель ВО, где охлаждается водой с 176 до 35°С.

Это позволяет уменьшить работу, затрачиваемую на сжатие воздуха в компрессоре высокого давления КВД (степень сжатия = 6,3). Из него воздух поступает в камеру сгорания высокого давления КСВД и продукты сгорания с температурой 750 °С направляются в ТВД. Из ТВД газы, содержащие значительное количество кислорода, поступают в камеру сгорания низкого давления КСНД, в которой сжигается дополнительное топливо, а из нее — в ТНД. Отработавшие газы с температурой 390 °С выходят либо в дымовую трубу, либо в теплообменник для использования теплоты уходящих газов.

Как увидим ниже, ГТУ не отличается высокой экономичностью из-за высокой температуры уходящих газов. Усложнение схемы позволяет повысить ее экономичность, но одновременно требует увеличения капиталовложений и усложняет эксплуатацию.

Схема гту с компрессором

На рис.4 показано устройство ГТУ V94.3 фирмы Siemens. Атмосферный воздух от комплексного воздухоочистительного устройства (КВОУ) поступает в шахту 4, а из нее — к проточной части 16 воздушного компрессора. В компрессоре происходит сжатие воздуха. Степень сжатия в типичных компрессорах составляет = 13—17, и таким образом давление в тракте ГТУ не превышает 1,3—1,7 МПа (13—17 ат). Это еще одно серьезное отличие ГТУ от паровой турбины, в которой давление пара больше, чем давление газов в ГТУ в 10—15 раз. Малое давление рабочей среды обусловливает малую толщину стенок корпусов и легкость их прогрева. Именно это делает ГТУ очень маневренной, т.е. способной к быстрым пускам и остановкам. Если для пуска паровой турбины в зависимости от ее начального температурного состояния требуется от 1 ч до нескольких часов, то ГТУ может быть введена в работу за 10—15 мин.

При сжатии в компрессоре воздух нагревается. Таким образом, за компрессором температура воздуха составляет 300—350 °С. Воздух между стенками пламенной трубы (см. рис.4) и корпуса камеры сгорания движется к горелочному устройству, к которому подается и топливный газ. Поскольку топливо должно поступать в камеру сгорания, где давление 1,3—1,7 МПа, то давление газа должно быть большим. Для возможности регулирования его расхода в камеру сгорания требуется давление газа примерно вдвое больше, чем давление в камере. Если в подводящем газопроводе имеется такое давление, то газ подается в камеру сгорания прямо с газораспределительного пункта (ГРП). Если давление газа недостаточное, то между ГРП и камерой устанавливают дожимной газовый компрессор.

Расход топливного газа составляет всего примерно 1—1,5 % от расхода воздуха, поступающего от компрессора, поэтому создание высокоэкономичного дожимного газового компрессора представляет определенные технические трудности. Внутри пламенной трубы 10 образуются продукты сгорания высокой температуры. После подмешивания вторичного воздуха на выходе из камеры сгорания она несколько снижается, но достигает тем не менее, в типичных современных ГТУ 1350—1400°С.

Из камеры сгорания горячие газы поступают в проточную часть 7 газовой турбины. В ней газы расширяются до практически атмосферного давления, так как пространство за газовой турбиной сообщается либо с дымовой трубой, либо с теплообменником, гидравлическое сопротивление которого невелико.

При расширении газов в газовой турбине на ее валу создается мощность. Эта мощность частично расходуется на привод воздушного компрессора, а ее избыток — на привод ротора 1 электрогенератора. Одна из характерных особенностей ГТУ состоит в том, что компрессор требует примерно половины мощности, развиваемой газовой турбиной. Например, в создаваемой в России ГТУ мощностью 180 МВт (это и есть полезная мощность) мощность компрессора составляет 196 МВт. Это одно из принципиальных отличий ГТУ от ПТУ: в последней мощность, идущая на сжатие питательной воды даже до давления в 23,5 МПа (240 ат) составляет всего несколько процентов от мощности паровой турбины. Связано это с тем, что вода — малосжимаемая жидкость, а воздух для сжатия требует много энергии.

Таким образом, температура газов за ГТУ достаточно высока, и значительное количество теплоты, полученной при сжигании топлива, в буквальном смысле уходит в дымовую трубу. Поэтому при автономной работе ГТУ ее КПД невелик:для типичных ГТУ он составляет 35-36 %, т.е. существенно меньше, чем КПД ПТУ. Дело, однако, кардинальным образом изменяется при установке на «хвосте» ГТУ теплообменника (сетевого подогревателя или котла-утилизатора для комбинированного цикла), о чем пойдет речь в следующей лекции.

За газовой турбиной устанавливают диффузор — плавно расширяющийся канал, при течении в котором скоростной напор газов частично преобразуется в давление. Это позволяет иметь за газовой турбиной давление меньшее, чем атмосферное, что увеличивает работоспособность 1 кг газов в турбине и, следовательно, повышает ее мощность.

Устройство воздушного компрессора

Как уже указывалось, воздушный компрессор — это турбомашина, к валу которой подводится мощность от газовой турбины; эта мощность передается воздуху, протекающему через проточную часть компрессора, вследствие чего давление воздуха повышается вплоть до давления в камере сгорания.

Схема гту с компрессором

На рис.5 показан ротор ГТУ, уложенный в опорные подшипники; на переднем плане хорошо виден ротор компрессора и статорные элементы.

Читайте также: Холодильник океан реле компрессора

Из шахты 4 (см. рис.4) воздух поступает в каналы, образованные поворотными лопатками 2 (рис.5) невращающегося входного направляющего аппарата (ВНА). Главная задача ВНА — сообщить потоку, движущемуся в осевом (или радиально-осевом) направлении вращательное движение. Каналы ВНА принципиально не отличаются от сопловых каналов паровой турбины: они являются конфузорными (суживающимися), и поток в них ускоряется, одновременно приобретая окружную составляющую скорости.

Схема гту с компрессором

В современных ГТУ входной направляющий аппарат делают поворотным (рис.6). Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Дело заключается в том, что валы компрессора и электрогенератора имеют одинаковую частоту вращения, равную частоте сети. Поэтому, если не использовать ВНА, то и количество воздуха, подаваемого компрессором в камеру сгорания, постоянно и не зависит от нагрузки турбины. А изменить мощность ГТУ можно только изменением расхода топлива в камеру сгорания. Поэтому при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочих газов и перед газовой турбиной, и за ней. Это приводит к очень значительному снижению экономичности ГТУ.

Поворот лопаток при снижении нагрузки вокруг оси 1 на 25-30° (рис.6) позволяет сузить проходные сечения каналов ВНА и уменьшить расход воздуха в камеру сгорания, поддерживая постоянным соотношение между расходом воздуха и топлива. Установка входного направляющего аппарата позволяет поддерживать температуру газов перед газовой турбиной и за ней постоянной в диапазоне мощности примерно 100-80%.

Схема гту с компрессором

На рис.7 показан привод лопаток ВНА. К осям каждой лопатки крепится поворотный рычаг 2 (см. поз. 4 на рис.6), который через рычаг 4 связан с поворотным кольцом 1 (см. поз. 5 на рис.6). При необходимости изменения расхода воздуха кольцо 1 поворачивается с помощью тяг и электродвигателя с редуктором; при этом поворачиваются одновременно все рычаги 2 и соответственно лопатки ВНА 5.

Закрученный с помощью ВНА воздух поступает в 1-ю ступень воздушного компрессора, которая состоит из двух решеток: вращающейся (см. поз. 13 на рис.6 и поз. 3 на рис. рис.5) и неподвижной (см. поз. 1 на рис.6; в этом отличие от ступени турбины, в которой первая решетка — невращающаяся). Обе решетки в отличие от решеток турбины имеют расширяющиеся (диффузорные) каналы (рис.8), т.е. площадь для прохода воздуха на входе F1 меньше, чем F2 на выходе.

При движении воздуха в таком канале, его скорость уменьшается (w2 р1). К сожалению, сделать диффузорную решетку экономичной, т.е. чтобы скорость потока w1 в максимальной степени преобразовалась бы в давление, а не в теплоту, можно только при небольшой степени сжатия р2/р1 (обычно 1,2 — 1,3), что приводит к большому числу ступеней компрессора (14 — 16 при степени сжатия компрессора = 13 — 16).

На рис.9 показано течение воздуха в компрессорной ступени. Из входного (неподвижного) поворотного соплового аппарата воздух выходит со скоростью c1 (см. верхний треугольник скоростей), имеющий необходимую окружную закрутку ( c1. При движении в канале скорость воздуха уменьшается до значения w2, и он выходит под углом 2, определяемым наклоном профилей. Однако вследствие вращения и подвода к воздуху энергии от рабочих лопаток его скорость с2 в абсолютном движении будет больше, чем c1. Лопатки неподвижной решетки устанавливают так, чтобы вход воздуха в канал был безударным. Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается, а давление возрастает от р1 до р2. Во второй ступени и последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться в соответствии с увеличившейся плотностью воздуха из-за сжатия.

Иногда направляющие лопатки нескольких первых ступеней компрессора выполняют поворотными (см. рис.6) точно так же, как и лопатки ВНА. Это позволяет расширить диапазон мощности ГТУ, при котором температура газов перед газовой турбиной и за ней остается неизменной. Соответственно повышается и экономичность. Применение нескольких поворотных направляющих аппаратов позволяет работать экономично в диапазоне 100 — 50 % мощности.

Последняя ступень компрессора устроена так же, как и предшествующие с той лишь разницей, что задачей последнего направляющего аппарата 1 (рис.10) является не только повышение давления, но и обеспечение осевого выхода потока воздуха. Воздух поступает в кольцевой выходной диффузор 23, где давление повышается до максимального значения. С этим давлением воздух поступает в зону горения 9.

Из корпуса воздушного компрессора выполняются отборы воздуха для охлаждения элементов газовой турбины. Для этого в его корпусе выполняют кольцевые камеры (см. поз. 8 на рис.5), сообщаемые с пространством за соответствующей ступенью. Воздух из камер отводится с помощью трубопроводов (см. поз. 14 на рис.4).

Кроме того, компрессор имеет так называемые антипомпажные клапаны и обводные трубопроводы (см. поз. 6 на рис.4), перепускающие воздух из промежуточных ступеней компрессора в выходной диффузор газовой турбины при ее пуске и остановке. Это исключает неустойчивую работу компрессора при малых расходах воздуха (это явление называется помпажом), выражающуюся в интенсивной вибрации всей машины.

Создание высокоэкономичных воздушных компрессоров представляет собой чрезвычайно сложную задачу, которую, в отличие от турбин, невозможно решить только расчетом и проектированием. Поскольку мощность компрессора равна примерно мощности ГТУ, то ухудшение экономичности компрессора на 1 % приводит к снижению экономичности всей ГТУ на 2—2,5 %. Поэтому создание хорошего компрессора является одной из ключевых проблем создания ГТУ. Обычно компрессоры создаются путем моделирования (масштабирования), используя модельный компрессор, созданный путем длительной экспериментальной доводки.

Видео:Устройство и принцип работы винтового компрессораСкачать

Устройство и принцип работы винтового компрессора

Камеры сгорания ГТУ

Схема гту с компрессором

Камеры сгорания ГТУ отличаются большим разнообразием. Выше (на рис.4) показана ГТУ с двумя выносными камерами. На рис.11 показана ГТУ типа 13Е мощностью 140 МВт фирмы ABB с одной выносной камерой сгорания, устройство которой аналогично устройству камеры, показанной на рис.4. Воздух из компрессора из кольцевого диффузора поступает в пространство между корпусом камеры и пламенной трубой и затем используется для горения газа и для охлаждения пламенной трубы.

Схема гту с компрессором

Главный недостаток выносных камер сгорания — большие габариты, которые хорошо видны из рис.12. Справа от камеры размещается газовая турбина, слева — компрессор. Сверху в корпусе видны три отверстия для размещения антипомпажных клапанов и далее — привод ВНА. В современных ГТУ используют в основном встроенные камеры сгорания: кольцевые и трубчато-кольцевые.

Схема гту с компрессором

На рис.13 показана встроенная кольцевая камера сгорания. Кольцевое пространство для горения образовано внутренней17 и наружной 11 пламенными трубами. Изнутри трубы облицованы специальными вставками 13 и 16, имеющими термобарьерное покрытие со стороны, обращенной к пламени; с противоположной стороны вставки имеют оребрение, улучшающее их охлаждение воздухом, поступающим через кольцевые зазоры между вставками внутрь пламенной трубы. Таким образом, достигается температура пламенной трубы 750—800°С в зоне горения. Фронтовое микрофакельное горелочное устройство камеры состоит из нескольких сотен горелок 10, к которым подается газ из четырех коллекторов 5—8. Отключая коллекторы поочередно можно изменять мощность ГТУ.

Устройство горелки показано на рис.14. Из коллектора газ поступает по сверлению в штоке 3 к внутренней полости лопаток6 завихрителя. Последний представляет собой полые радиальные прямые лопатки, заставляющие воздух, поступающий из камеры сгорания, закручиваться и вращаться вокруг оси штока. В этот вращающийся воздушный вихрь поступает природный газ из внутренней полости лопаток завихрителя 6 через мелкие отверстия 7. При этом образуется однородная топливно-воздушная смесь, выходящая в виде закрученной струи из зоны 5. Кольцевой вращающийся вихрь обеспечивает устойчивое горение газа.

На рис.10 показана трубчато-кольцевая камера сгорания ГТЭ-180. В кольцевое пространство 24 между выходной частью воздушного компрессора и входной частью газовой турбины с помощью перфорированных конусов 3 помещают 12 пламенных труб 10. Пламенная труба содержит многочисленные отверстия диаметром 1 мм, расположенные по кольцевым рядам на расстоянии 6 мм между ними; расстояние между рядами отверстий 23 мм. Через эти отверстия снаружи поступает «холодный» воздух, обеспечивая конвективно-пленочное охлаждение и температуру пламенной трубы не выше 850°С. На внутреннюю поверхность пламенной трубы наносится термобарьерное покрытие толщиной 0,4 мм.

На фронтовой плите 8 пламенной трубы устанавливают горелочное устройство, состоящее из центральной пилотной горелки 6, поджигающей топливо при пуске с помощью свечи 5, и пяти основных модулей, один из которых показан на рис.15. Модуль позволяет сжигать газ и дизельное топливо. Газ через штуцер 1 после фильтра 6 поступает в кольцевой коллектор топливного газа5, а из нее — в полости, содержащие мелкие отверстия (диаметр 0,7 мм, шаг 8 мм). Через эти отверстия газ поступает внутрь кольцевого пространства. В стенках модуля выполнено шесть тангенциальных пазов 9, через которые поступает основное количество воздуха, подаваемого для горения от воздушного компрессора. В тангенциальных пазах воздух закручивается и, таким образом, внутри полости 8 образуется вращающийся вихрь, движущийся к выходу из горелочного устройства. На периферию вихря через отверстия 3 поступает газ, смешивается с воздухом, и образовавшаяся гомогенная смесь выходит из горелки, где воспламеняется и сгорает. Продукты сгорания поступают к сопловому аппарату 1-й ступени газовой турбины.

Читайте также: Компрессор автокондиционера не качает давление

Видео:ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬСкачать

ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Газовая турбина

Газовая турбина является наиболее сложным элементом ГТУ, что обусловлено в первую очередь очень высокой температурой рабочих газов, протекающих через ее проточную часть: температура газов перед турбиной 1350°С в настоящее время считается «стандартной», и ведущие фирмы, в первую очередь General Electric, работают над освоением начальной температуры 1500°С. Напомним, что «стандартная» начальная температура для паровых турбин составляет 540°С, а в перспективе — температура 600—620°С.

Стремление повысить начальную температуру связано, прежде всего, с выигрышем в экономичности, который она дает. Это хорошо видно из рис.16, обобщающего достигнутый уровень газотурбостроения: повышение начальной температуры с 1100 до 1450°С дает увеличение абсолютного КПД с 32 до 40%, т.е. приводит к экономии топлива в 25%. Конечно, часть этой экономии связана не только с повышением температуры, но и с совершенствованием других элементов ГТУ, а определяющим фактором все-таки является начальная температура.

Для обеспечения длительной работы газовой турбины используют сочетание двух средств. Первое средство — применение для наиболее нагруженных деталей жаропрочных материалов, способных сопротивляться действию высоких механических нагрузок и температур (в первую очередь для сопловых и рабочих лопаток). Если для лопаток паровых турбин и некоторых других элементов применяются стали (т.е. сплавы на основе железа) с содержанием хрома 12—13%, то для лопаток газовых турбин используют сплавы на никелевой основе (нимоники), которые способны при реально действующих механических нагрузках и необходимом сроке службы выдержать температуру 800—850°С. Поэтому вместе с первым используют второе средство — охлаждение наиболее горячих деталей.

Видео:ПРИМЕНЕНИЕ СИСТЕМ ПРЕДВАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА НА ВХОДЕ В КОМПРЕССОР ГТУСкачать

ПРИМЕНЕНИЕ СИСТЕМ ПРЕДВАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА НА ВХОДЕ В КОМПРЕССОР ГТУ

Система охлаждения газовой турбины

Для охлаждения большинства современных ГТУ используется воздух, отбираемый из различных ступеней воздушного компрессора. Уже работают ГТУ, в которых для охлаждения используется водяной пар, который является лучшим охлаждающим агентом, чем воздух. Охлаждающий воздух после нагрева в охлаждаемой детали сбрасывается в проточную часть газовой турбины. Такая система охлаждения называется открытой. Существуют замкнутые системы охлаждения, в которых нагретый в детали охлаждающий агент направляется в холодильник и затем снова возвращается для охлаждения детали. Такая система не только весьма сложна, но и требует утилизации тепла, отбираемого в холодильнике.

Система охлаждения газовой турбины — самая сложная система в ГТУ, определяющая ее срок службы. Она обеспечивает не только поддержание допустимого уровня рабочих и сопловых лопаток, но и корпусных элементов, дисков, несущих рабочие лопатки, запирание уплотнений подшипников, где циркулирует масло и т.д. Эта система чрезвычайно сильно разветвлена и организуется так, чтобы каждый охлаждаемый элемент получал охлаждающий воздух тех параметров и в том количестве, который необходим для поддержания его оптимальной температуры. Излишнее охлаждение деталей так же вредно, как и недостаточное, так как оно приводит к повышенным затратам охлаждающего воздуха, на сжатие которого в компрессоре затрачивается мощность турбины. Кроме того, повышенные расходы воздуха на охлаждение приводят к снижению температуры газов за турбиной, что очень существенно влияет на работу оборудования, установленного за ГТУ (например, паротурбинной установки, работающей в составе ПТУ). Наконец, система охлаждения должна обеспечивать не только необходимый уровень температур деталей, но и равномерность их прогрева, исключающую появление опасных температурных напряжений, циклическое действие которых приводит к появлению трещин.

На рис.17 показан пример схемы охлаждения типичной газовой турбины. В прямоугольных рамках приведены значения температур газов. Перед сопловым аппаратом 1-й ступени 1 она достигает 1350°С. За ним, т.е. перед рабочей решеткой 1-й ступени она составляет 1130°С. Даже пе¬ред рабочей лопаткой последней ступени она находится на уровне 600°С. Газы этой температуры омывают сопловые и рабочие лопатки, и если бы они не охлаждались, то их температура равнялась бы температуре газов и срок их службы ограничивался бы несколькими часами.

Для охлаждения элементов газовой турбины используется воздух, отбираемый от компрессора в той его ступени, где его давление несколько больше, чем давление рабочих газов в той зоне газовой турбины, в которую подается воздух. Например (рис.17), на охлаждение сопловых лопаток 1-й ступени охлаждающий воздух в количестве 4,5% от расхода воздуха на входе в компрессор отбирается из выходного диффузора компрессора, а для охлаждения сопловых лопаток последней ступени и примыкающего участка корпуса — из 5-й ступени компрессора. Иногда для охлаждения самых горячих элементов газовой турбины воздух, отбираемый из выходного диффузора компрессора, направляют сначала в воздухоохладитель, где его охлаждают (обычно водой) до 180—200°С и затем направляют на охлаждение. В этом случае воздуха для охлаждения требуется меньше, но при этом появляются затраты на воздухоохладитель, усложняется ГТУ, теряется часть теплоты, отводимой охлаждающей водой.

Схема гту с компрессором

Газовая турбина обычно имеет 3—4 ступени, т.е. 6—8 венцов решеток, и чаще всего охлаждаются лопатки всех венцов, кроме рабочих лопаток последней ступени. Воздух для охлаждения сопловых лопаток подводится внутрь через их торцы и сбрасываются через многочисленные (600—700 отверстий диаметром 0,5—0,6 мм) отверстия, расположенные в соответствующих зонах профиля (рис.18). К рабочим лопаткам охлаждающий воздух подводится через отверстия, выполненные в торцах хвостовиков.

Схема гту с компрессором

Для того чтобы понять, как устроены охлаждаемые лопатки, необходимо хотя бы в общих чертах рассмотреть технологию их изготовления. Ввиду исключительной трудности механической обработки никелевых сплавов для получения лопаток в основном используется точное литье по выплавляемым моделям. Для его реализации сначала по специальной технологии формовки и термообработки из материалов на основе керамики изготавливают литейные стержни (рис.19 и 20).

Литейный стержень — это точная копия полости внутри будущей лопатки, в которую будет поступать и протекать в необходимом направлении охлаждающий воздух. Литейный стержень помещают в пресс-форму, внутренняя полость в которой полностью соответствует лопатке (см. рис.18), которую необходимо получить. Получающееся свободное пространство между стержнем и стенкой пресс-формы запол¬няют нагретой легкоплавкой массой (например, пластмассой), которая застывает. Стержень вместе с обволакивающей ее застывающей массой, повторяющей внешнюю форму лопатки, представляет собой выплавляемую модель. Ее помещают в литейную форму, к которой подают расплав нимоника. Последний выплавляет пластмассу, занимает ее место и в результате появляется литая лопатка с внутренней полостью, заполненной стержнем. Стрежень удаляют вытравливанием специальными химическими растворами. Полученные сопловые лопатки практически не требуют дополнительной механической обработки (кроме изготовления многочисленных отверстий для выхода охлаждающего воздуха). Рабочие литые лопатки требуют обработки хвостовика с помощью специального абразивного инструмента.

Описанная вкратце технология заимствована из авиационной техники, где достигнутые температуры гораздо выше, чем в стационарных паровых турбинах. Трудность освоения этих технологий связана с гораздо большими размерами лопаток для стационарных ГТУ, которые растут пропорционально расходу газов, т.е. мощности ГТУ.

Весьма перспективным представляется использование так называемых монокристаллических лопаток, которые изготавливаются из одного кристалла. Связано это с тем, что наличие границ зерен при длительном пребывании при высокой температуре приводит к ухудшению свойств металла.

Видео:Рабочий процесс в осевой ступени турбиныСкачать

Рабочий процесс в осевой ступени турбины

Ротор газовой турбины

Схема гту с компрессором

Ротор газовой турбины представляет собой уникальную сборную конструкцию (рис.21,а). Перед сборкой отдельные диски5 компрессора и диска 7 газовой турбины облопачиваются и балансируются, изготавливаются концевые части 1 и 8, проставочная часть 11 и центральный стяжной болт 6. Каждый из дисков имеет два кольцевых воротника, на котором выполнены хирты (по имени изобретателя — Hirth), — строго радиальные зубья треугольного профиля. Смежные детали имеют точно такие же воротники с точно такими же хиртами. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков (это обеспечивает радиальность хиртов) и повторяемость сборки после разборки ротора.

Схема гту с компрессором

Ротор собирается на специальном стенде, представляющем собой лифт с кольцевой площадкой для монтажного персонала, внутри которой осуществляется сборка. Сначала собирается на резьбе концевая часть ротора 1 и стяжной стержень 6. Стержень ставится вертикально внутри кольцевой площадки и сверху на него с помощью крана (рис.22) опускается диск 1-й ступени компрессора. Центровка диска и концевой части осуществляется хиртами. Перемещаясь на специальном лифте вверх, монтажный персонал диск за диском [сначала компрессора, затем проставочная часть, а затем турбины и правой концевой части 8 (см. рис.21,а)] собирает весь ротор. На правый конец навинчивается гайка 9, а на оставшуюся часть резьбовой части стяжного стержня устанавливается гидравлическое устройство, сдавливающее диски и вытягивающее стяжной стержень. После вытяжки стержня гайка 9 навинчивается до упора, и гидравлическое устройство снимается. Растянутый стержень надежно стягивает диски между собой и превращает ротор в единую жесткую конструкцию. Собранный ротор извлекают из сборочного стенда, и он готов к установке в ГТУ.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📸 Видео

    Наддув ДВС. Как работает турбонаддув?Скачать

    Наддув ДВС. Как работает турбонаддув?

    Учебный фильм "Трубопроводный транспорт газа" - Часть 2Скачать

    Учебный фильм "Трубопроводный транспорт газа" - Часть 2

    Суперчарджер. Приводной компрессор | Science Garage На РусскомСкачать

    Суперчарджер. Приводной компрессор | Science Garage На Русском

    Работа винтового компрессора, его принцип действия и устройство.Скачать

    Работа винтового компрессора, его принцип действия и устройство.

    Принцип работы газоперекачивающего агрегата ГПА-Ц-16Скачать

    Принцип работы газоперекачивающего агрегата ГПА-Ц-16

    Поршневой компрессорСкачать

    Поршневой компрессор

    Газовая турбина в работе - циклы работы газотурбинной установкиСкачать

    Газовая турбина в работе - циклы работы газотурбинной установки

    10. ОСНОВЫ ТЕПЛОТЕХНИКИ. Циклы газотурбинных установок ГТУ. Цикл Брайтона. Сравнение цикловСкачать

    10. ОСНОВЫ ТЕПЛОТЕХНИКИ. Циклы газотурбинных установок ГТУ. Цикл Брайтона. Сравнение циклов

    Рабочий процесс в осевой ступени турбиныСкачать

    Рабочий процесс в осевой ступени турбины

    Газоперекачивающий агрегат ГПА-Ц-16Скачать

    Газоперекачивающий агрегат ГПА-Ц-16
Поделиться или сохранить к себе:
Технарь знаток