Схема механизма передвижения гпм с тихоходным валом

Принципиальная схема механизма передвижения изображена на рис. 33, а. Ходовые колеса машины 1 перекатываются по рельсам 2 или непосредственно по местности (пневмоколесные краны) и перемещают всю машину. Колеса связаны при помощи нескольких (обычно зубчатых, реже цепных) передач 3 с двигателем 5.

По общей схеме передач механизм передвижения сходен с механизмом подъема: как и в механизмах подъема, на одном из валов установлен тормоз 4, предназначенный для удержания крана на месте при воздействии ветрового давления и при установке крана на площадке с уклоном.

Для перемещения отдельных частей крана (например, тележки по мосту или стреле) применяют канатные механизмы передвижения (рис. 33, б). К обоим концам передвигающейся по рельсам те лежки 6 крана, несущей подъемный механизм, прикреплены тяговые канаты 8, один из которых огибает неподвижный блок 7; свободные концы канатов крепятся к барабану 9 так, что конец одного каната подходит к нему сверху, а конец другого — снизу. При вращении барабана один конец свивается с него, а второй навивается, и этим обеспечивается перемещение тележки. Направление ее перемещения зависит от направления вращения барабана, который при помощи передач 10 связан с двигателем 5. В механизме имеется тормоз 11.

Расчет механизма передвижения

Сопротивление перемещению крана, движущегося вверх под углом (рис. 34),

где G0 — вес крана с полезной нагрузкой, кгс(дан); ά — угол наклона местности, град; Wвет — сопротивление ветра; f0 — коэффициент сопротивления движению на горизонталь ном пути;

β0 — коэффициент, учитывающий трение ступиц о раму и ре борд колес о рельсы. Например, при подшипниках качения и конических колесах мостовых кранов β0=1,5 — 2,5, а при цилиндрических колесах β0= 2,5 — 3,3. Коэффициент сопротивления движению называется в теоретической механике коэффициентом тяги. При движении груза на ко лесах

где К — плечо трения качения колеса по опорной поверхности,

f — коэффициент трения цапфы в подшипнике; r — радиус цапфы оси колеса, см; Rкол — радиус колеса, см.

Коэффициент трения / принимают при подшипниках скольжения 0,08—0,12; при подшипниках качения 0,01—0,02. Плечо силы

трения качения К для чугунных и стальных колес при качении по стальным рельсам принимают 0,05—0,08 см.

Видео:Обучающий фильм "Электрические мостовые краны"/ Overhead CraneСкачать

Обучающий фильм "Электрические мостовые краны"/ Overhead Crane

Обычно величину f0β0 называют основным удельным сопротивлением движению и обозначают ω. Для тележек рельсовых кранов

Для кранов на пневмоколесном ходу, например, принимают следующие значения ω в зависимости от покрытия дороги:

Цементобетонные и асфальтобетонные 0,01—0,02

Грунтовые сухие и ровные 0,04—0,05

Мощность на валу двигателя механизма передвижения

где ύпер — скорость передвижения, м/сек.

При канатном механизме передвижения (рис. 33, б), кроме сопротивления передвижению Wпер , учитывают сопротивление, возникающее при перетягивании грузового каната через блоки, и сопротивление от натяжения нерабочей ветви тягового каната 8.

Схема механизма передвижения гпм с тихоходным валом

В мостовых кранах механизмы передвижения устанавливают на мосту (для перемещения моста по ходовым путям) и на тележке (для перемещения тележки вдоль пролета крана).

Механизм передвижения имеет приводной электродвигатель, связанный системой передач с ходовой частью крана, снабженной приводными и неприводными ходовыми колесами.

Механизмы передвижения мостовых кранов выполняют по двум основным схемам расположения привода: с центральным или раздельным. При центральном приводе приводной электродвигатель установлен в средней части моста. В этом случае крутящий момент на приводные колеса передается трансмиссионным валом. Прн раздельном приводе каждое приводное колесо или группы приводных ходовых колес имеют индивидуальный привод.

Рекламные предложения на основе ваших интересов:

Видео:Обучающий фильм "Электрические мостовые краны"/ Overhead CraneСкачать

Обучающий фильм "Электрические мостовые краны"/ Overhead Crane

Механизмы передвижения кранов с центральным приводом по типу трансмиссионного вала подразделяют с тихоходным, средне-ходовым и быстроходным трансмиссионными валами.

Механизм передвижения с тихоходным трансмиссионным валом (рис. 28, а) состоит из приводного электродвигателя, двух- или трехступенчатого редуктора и трансмиссионного вала. Трансмиссионный вал обычно состоит из нескольких секций, которые соединены между собой зубчатыми муфтами, и опирается на промежуточные опоры, закрепленные на мосту крана. Соединение трансмиссионного вала с выходным валом редуктора и приводным колесом осуществляется также с помощью зубчатых муфт. Тормоз устанавливают или на соединительной муфте вала электродвигателя с входным валом редуктора или на свободном конце вала электродвигателя. Применение зубчатых муфт, а также опор с самоустанавлирающимися подшипниками позволяет получить необходимую соосность соединяемых вставок и обеспечить нормальную работу трансмиссионного вала. Трансмиссионный вал механизма передвижения (рис. 28, а) имеет частоту вращения, равную частоте вращения приводных ходовых колес и передает значительный крутящий момент, поэтому вал, муфты и опоры имеют большие размеры, а механизм обладает большой массой. Несмотря на указанные недостатки, механизмы передвижения с тихоходным трансмиссионным валом нашли широкое распространение на мостовых кранах общего и специальных назначений, особенно на мостах ферменной конструкции.

Читайте также: Лучшая модель холодильника два или один компрессор

Механизм передвижения с среднеходовым трансмиссионным валом (рис. 28,6) комплектуют редуктором с меньшим передаточным числом, чем редуктор на рис. 28, а, что позволяет уменьшить в несколько раз крутящий момент, передаваемый трансмиссионным валом от двигателя и, следовательно, использовать муфты, опорные подшипники и вставки меньших размеров. Для передачи крутящего момента с трансмиссионного вала на приводные ходовые колеса используют открытые зубчатые передачи, состоящие из шестерен, насаженных на концы трансмиссионного вала и зубчатых венцов, установленных на колесах либо дополнительные концевые редукторы, располагаемые вблизи колес.

Применение муфт, промежуточных опор и вставок меньших размеров позволяет снизить массу узлов трансмиссионного вала. Однако применение дополнительных открытых зубчатых передач или концевых редукторов не приводит к значительному снижению общей массы механизма. Механизмы передвижения с открытыми зубчатыми передачами, обладающими малой долговечностью, не нашли широкого применения.

Рис. 28. Схема механизмов передвижения кранов:
а — с тихоходным трансмиссионным валом; б — с среднеходовым транс» мисси они ым валом; в — с быстроходным трансмиссионным валом; г — о раздельным приводом

Механизм передвижения с быстроходным трансмиссионным валом (рис. 28, в) имеет приводной электродвигатель, установленный в середине моста крана, который непосредственно соединен зубчатыми муфтами с трансмиссионным валом. Концы трансмиссионного вала соединены с входными валами редукторов, размещенных вблизи приводных ходовых колес. Выходной вал редуктора зубчатыми муфтами соединяется с колесом непосредственно или с помощью промежуточного тихоходного вала, В рассмотренной схеме механизма передвижения трансмиссионный вал этого механизма передвижения имеет частоту вращения, равную частоте вращения приводного электродвигателя. По сравнению с механизмами передвижения, приведенными на рис. 28, а, б, он передает наименьший крутящий момент. Это позволяет при той же мощности приводного двигателя уменьшить в 2—3 раза диаметр трансмиссионного вала по сравнению с тихоходным валом и снизить его массу в 4—6 раз. Общая масса механизма передвижения с быстроходным валом, несмотря на наличие двух редукторов при больших пролетах, будет меньше массы механизма передвижения с тихоходным валом.

Однако вследствие большой частоты вращения установка быстроходного вала требует особой точности его изготовления, балансировки и монтажа, применения опор повышенной жесткости, препятствующих образованию несоосности при деформации моста (в результате перекоса) крана в горизонтальной плоскости. Поэтому механизмы передвижения с быстроходным валом применяют на мостовых кранах с пролетами, не превышающими 20 м.

Механизм передвижения с раздельным приводом (рис. 28, г) нашел преимущественное распространение на мостовых балочных кранах общего и специального назначений пролетами более 15 м. Он состоит из двух или нескольких самостоятельных приводов, устанавливаемых на рабочих площадках моста вблизи концевых балок и служит для привода одного или нескольких ходовых колес. Применение раздельного механизма передвижения позволяет отказаться от длинных трансмиссионных валов, уменьшить затраты на монтаж и эксплуатацию. При раздельном приводе каждая концевая балка моста приводится в движение собственным приводом, а связь между приводами осуществляется через металлоконструкцию крана. Каждый привод состоит из электродвигателя, тормоза, редуктора и приводного ходового колеса. Для удобства монтажа и компенсации несоосности соединяемых валов редуктора и ходового колеса применяют зубчатые муфты и тихоходный вал (рис. 29, а) или используют муфты типа шарнира Гука и карданные валы (рис. 29,6).

Широкое применение в раздельных механизмах передвижения нашли компактные приводы (рис. 30), выполненные в виде навесного вертикального редуктора, устанавливаемого на шлицах вала приводного ходового колеса, и фланцевого электродвигателя. Тормоз устанавливают на подставке, закрепляемой на редукторе или соединительной муфте вала двигателя с редуктором.

Механизмы передвижения тележек мостовых кранов выполнены по схеме механизма передвижения крана с тихоходным трансмиссионным валом с центральным (рис. 31, а) или с консольным (рис. 31,6) расположением вертикального редуктора на раме тележки. Вращающий момент от электродвигателя через редуктор передается на трансмиссионный вал, связанный с цилиндрическими приводными ходовыми колесами (рис. 31, а), или передается непосредственно на приводное ходовое колесо тележки, которое трансмиссионным валом соединено с другим приводным колесом (рис. 31,6).

Читайте также: Цепь балансировочного вала волга сайбер

Видео:Мостовой кранСкачать

Мостовой кран

Рис. 29. Общий вид раздельного привода механизма передвижения мостового крана:
а — с вертикальным редуктором и зубчатой соединительной муфтой; б — о горизонтальным редуктором и быстроходным карданным валом

Рис. 30. Схема раздельного привода с фланцевым электродвигателем и навесным редуктором

Одним из важнейших элементов ходовой части рельсовых механизмов передвижения, к которым относятся также и механизмы передвижения мостовых кранов и их. тележек, являются ходовые колеса. Для механизмов передвижения мостовых кранов используют ходовые колеса с боковыми уступами — ребордами. При применении безребордных ходовых колес ходовую часть крана допол- нительно снабжают устройствами, удерживающими кран на рельсо« вом пути.

Ходовые колеса мостовых кранов и тележек выполнены из стали одно- или двухребордными с цилиндрической или конической дорожкой катания. Преимущественное распространение получили двухребордные ходовые колеса с цилиндрической дорожкой катания . Основные размеры двух- и одноребордных стальных цельнокатаных и штампованных цилиндрических ходовых колес (ГОСТ 3569—74), а также конических и цилиндрических безребордных ходовых колес приведены в табл. 32.

Для компенсации неточностей в укладке крановых путей, монтажа металлоконструкции и т. п. ширина цилиндрической дорожки катания одно- и двухребордных ходовых колес для механизмов передвижения кранов должна быть на 30 мм больше ширины головки рельса, конической дорожки катания на 40 мм, а ходовых колес тележек на 15—20 мм.

Ходовые колеса кранов и тележек являются тяжелонагруженны- ми и быстроизнашиваемыми элементами ходовой части, Поэтому к материалам, из которых они изготовлены, а также к их обработке и установке предъявляют высокие требования.

Рис. 31. Схема привода механизма передвижения тележки:
а — с центральным расположением вертикального редуктора; б — с боковым расположением вертикального редуктора
32. Основные размеры (мм) крановых колес (ГОСТ 3569—74)

Ходовые колеса кранов и тележек изготовляют из штампованных или цельнокатаных заготовок из стали 75, 65Г (ГОСТ 14959—79). Цельнокатаные колеса имеют приблизительно долговечность, большую в 1,5 раза долговечности штампованных. Для обеспечения высокой твердости (НВ 300—360) дорожки катания ходовые колеса подвергают термообработке на глубину: при диаметре колеса 200—250 мм —15 мм; 320—500 мм —20 мм; 560—710 мм — 30 мм; 800—1000 мм — 40 мм. Для ходовых колес, предназначенных для кранов тяжелого и весьма тяжелого режимов работы, применяют-., закалку токами высокой частоты, а для колес кранов среднего и легкого режимов работы — нормализацию. Обработка поверхности катания должна соответствовать 11-му квалитету.

При возникновении перекоса крана, оборудованного приводными цилиндрическими колесами, реборды вступают в контакт с головкой подкранового рельса, ограничивают дальнейшее образование перекоса и подвергаются большим нагрузкам трения, вызывающим их быстрое изнашивание. Поэтому для уменьшения трения и износа в некоторых конструкциях мостовых кранов применяют устройства для смазывания реборд и головок рельсов.

При возникновении перекоса крана с приводными коническими ходовыми колесами, устанавливаемыми вершиной конуса вне пролета, контакт с рельсом приводного колеса опережающей стороны крана осуществляется по меньшему диаметру, а колеса отстающей стороны — по большему. При одинаковой частоте вращения приводных колес скорость передвижения отстающей стороны крана возрастает, а опережающей снижается. Это приводит к выравниванию крана на путях без взаимодействия реборд с рельсами и способствует увеличению срока службы ходовых колес.

Немаловажное влияние на изнашивание реборд ходовых колес оказывают точность установки ходовых колес на кране и правильная укладка рельсового пути. Перекос хотя бы одного из ходовых колес способствует более интенсивному перекосу движущегося крана и трению реборд о головки подкрановых рельсов. При недопустимом сужении или расширении .крановых путей также наблюдается интенсивное изнашивание реборд ходовых колес, а иногда и заклинивание крана, приводящее к поломке ходовой части. Поэтому крановщики и ремонтные службы при интенсивном изнашивании ходовых колес в первую очередь должны обратить вни- мание на их установку и состояние крановых путей. В соответствии с ГОСТ 24378—80 Е угол перекоса ходового колеса по отношению к оси концевой балки не должен превышать 0,002 рад; максимальное угловое отклонение опорных поверхностей подбуксо- вых платиков для выкатных букс 0,002 рад. Точность укладки подкранового пути регламентируют Правила.

Читайте также: Установка валов ваз 21124

Видео:Кинематическая схема условные обозначенияСкачать

Кинематическая схема условные обозначения

Приводные ходовые колеса (рис. 32,а) монтируют на валах, передающих на колесо крутящий момент от привода, а неприводные (рис. 32,6) — на вращающихся осях, не передающих крутящего момента. Валы или оси ходовых колес устанавливают на подшипниках в корпусах, называемых буксами.

Буксы, выполненные съемными и разъемными, предназначены для закрепления ходовых колес на раме тележки, концевых балках моста крана или балансирах. Применение съемных букс позволяет упростить замену ходовых колес при ремонтах путем отсоединения букс от мест крепления и последующего выкатывания ходового колеса. Наиболее широко распространен монтаж на угловых отъемных буксах.

Рис. 32. Крановые ходовые колеса: а — приводное; б — неприводное

При установке безребордных ходовых колес в качестве элементов, ограничивающих перемещение крана по рельсам, используют горизонтальные направляющие ролики (рис. 33). Направляющие ролики устанавливают на концевых балках или балансирах в непосредственной близости от ходовых колес в двух вариантах: с двух сторон рельса или с одной стороны, обращенной к пролету. Благодаря применению направляющих роликов уменьшаются потери на трение по сравнению с ребордными колесами, поскольку в этом случае трение скольжения реборд по головке рельса заменяется трением качения горизонтальных роликов по рельсу. Усложнение конструкции ходовой части компенсируется снижением мощности привода (благодаря уменьшению сопротивлений передвижению), увеличением срока службы ходовых колес.

Диаметры ходовых колес, применяемых для механизмов передвижения кранов и тележек в соответствии с действующим стандартом, не должны превышать 1 м, и, следовательно, максимальная допускаемая нагрузка на ходовое колесо также ограничена. Для мостовых кранов и тележек грузоподъемностью до 50 т ходовая часть выполнена с четырьмя ходовыми колесами, для кранов грузоподъемностью 80 т с восьмью, а для кранов грузоподъемностью 160 т и более — с 16 колесами.

Для обеспечения равномерного распределения нагрузок на ходовые колеса ходовую часть мостовых кранов большой грузоподъемности выполняют на уравновешивающих балансирах. Ходовые колеса на буксах попарно устанавливают на балансирных тележках и шарнирно соединяют горизонтальными осями или с концевой балкой крана (рис. 34, а) или с главным балансиром (рис. 34, б), который в свою очередь шарнирно соединен с концевой балкой. Привод такой многоколесной ходовой части — центральный или раздельный и осуществляется одним или несколькими механизмами передвижения. Приводными могут быть все колеса, а также половина или четверть общего числа ходовых колес. Важным условием применения нескольких механизмов передвижения является обеспечение синхронной частоты вращения всех приводных колес.

На механизмах передвижения применяют горизонтальные редукторы Ц2, вертикальные редукторы ВК и ВКУ, которые жестко закрепляют болтами на металлоконструкции крана или тележки, и вертикальные редукторы ВКН с полым выходным валом, с внутренними шлицами или шпоночной канавкой, предназначенными для соединения с валом ходового колеса.

Рис. 33. Ходовая часть механизма передвижения с горизонтальными роликами:
а — общий вид ходовой части с балансиром; б — установка горизонтального ролика

Рис. 34. Установка ходовых колес мостового крана на балансирных тележках:
а — вось.миколесного; 6 — шестнаддатиколесного

При установке безребордных ходовых колес в качестве элемен» тов, ограничивающих перемещение крана по рельсам, используют горизонтальные направляющие ролики (рис. 33). Направляющие ролики устанавливают на концевых балках или балансирах в не- посредственной близости от ходовых колес в двух вариантах: о двух сторон рельса или с одной стороны, обращенной к пролету. Благодаря применению направляющих роликов уменьшаются потери на трение по сравнению с ребордными колесами, поскольку в этом случае трение скольжения реборд по головке рельса заменяется трением качения горизонтальных роликов по рельсу. Усложнение конструкции ходовой части компенсируется снижением мощности привода (благодаря уменьшению сопротивлений передвижению), увеличением срока службы ходовых колес.

Диаметры ходовых колес, применяемых для механизмов передвижения кранов и тележек в соответствии с действующим стандартом, не должны превышать 1 м, и, следовательно, максимальная допускаемая нагрузка на ходовое колесо также ограничена. Для мостовых кранов и тележек грузоподъемностью до 50 т ходовая часть выполнена с четырьмя ходовыми колесами, для кранов грузоподъемностью 80 т с восьмью, а для кранов грузоподъемностью 160 т и более — с 16 колесами.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала

    Видео:Кинематическая схема гидропередачи УГП750-1200Скачать

    Кинематическая схема гидропередачи УГП750-1200


    🎬 Видео

    Принцип работы редуктора. Виды редукторов. Курсовая.Скачать

    Принцип работы редуктора. Виды редукторов. Курсовая.

    Путина напугал громкий звук. И он сразу поправил бронежилетСкачать

    Путина напугал громкий звук. И он сразу поправил бронежилет

    Машины и механизмы. Часть 2. Кинематические схемы.Скачать

    Машины и механизмы. Часть 2. Кинематические схемы.

    ЛЕКЦИЯ #4. ТММ. План положения механизма.Кинематика.Скачать

    ЛЕКЦИЯ #4. ТММ. План положения механизма.Кинематика.

    Обучение на тему "Эксплуатация и обслуживание кран-балки управляемой с пола"Скачать

    Обучение на тему "Эксплуатация и обслуживание кран-балки управляемой с пола"

    Грузоподъемные механизмы и машиныСкачать

    Грузоподъемные механизмы и машины

    ТЕХНИКА БЕЗОПАСНОСТИ. Вид Грубейшего Нарушения ТРЕБОВАНИЙ ТБ при работе на СТАНКАХ.Скачать

    ТЕХНИКА БЕЗОПАСНОСТИ. Вид Грубейшего Нарушения ТРЕБОВАНИЙ ТБ при  работе на СТАНКАХ.

    ПРАКТИКА # 5. ТММ. Как построить план положений механизма.Скачать

    ПРАКТИКА # 5. ТММ. Как построить план  положений механизма.

    Чтение и построение кинематических схемСкачать

    Чтение и построение кинематических схем

    Мостовой кран.Защитная панель мостового крана.часть 3Скачать

    Мостовой кран.Защитная панель мостового крана.часть 3

    КОМПАС-3D v17: План механизма ТММ (теория механизмов и машин)Скачать

    КОМПАС-3D v17: План механизма ТММ (теория механизмов и машин)

    Построение плана скоростей. ТММСкачать

    Построение плана скоростей. ТММ
Поделиться или сохранить к себе:
Технарь знаток