Схема поршневых многоступенчатых компрессоров

Для получения газов высокого давления применяют многоступенчатые компрессоры. В них сжатие газа осуществляется политропно в нескольких последовательно соединенных цилиндрах с промежуточным охлаждением газа после сжатия в каждом цилиндре.

Принципиальная схема многоступенчатого компрессора, состоящего из трех ступеней, представлена на рис. 8.4.

8, 9 — промежу­точные охладители. В направлении стрелок 10, 11 осуществляется вход и выход охлаждающей воды.

Схема поршневых многоступенчатых компрессоров

Принцип работы многоступенчатого компрессора состоит в следующем. Через клапан 6 первой ступени происходит всасывание газа. После сжатия газ через охладитель 8 направляется во вторую ступень компрессора. При­чем всасывание газа во второй ступени происходит при давлении сжатия в первой ступени. Всасывание газа в третьей ступени выполняется через про­межуточный охладитель 9 при давлении сжатия во второй ступени. Через на­гнетательный клапан третьей ступени осуществляется нагнетание газа в ре­зервуар.

Схема поршневых многоступенчатых компрессоров

Диаграмма процессов сжатия в трехступенчатом компрессоре в pv — коор­динатах представлена на рис. 8.5. Рассмотрим процессы:

0-1 — линия всасывания газа в первой ступени компрессора (не является термодинамиче­ским процессом, т.к. происходит лишь перемещение газа без изменения его термодинамических параметров);

1-2 — политропный процесс сжатия в пер­вой ступени;

2-а — линия нагнетания газа в промежуточный охладитель 8;

а-3 — линия всасывания во второй ступени компрессора;

3-4 — политропный про­цесс сжатия во второй ступени;

4-b — линия нагнетания в промежуточный ох­ладитель 9;

b-5 — линия всасывания в третьей ступени компрессора;

5-6 — по­литропный процесс сжатия в третьей ступени;

6-с — линия нагнетания газа в резервуар.

Отрезки 2-3 и 4-5 изображают уменьшение объема газа в процессе при постоянном давлении от охлаждения в охладителях 8 и 9. Охлаждение про­ про­изводится до одной температуры, равной температуре всасывания газа в первой ступени Т1 . Поэтому температуры в точках 1, 3, 5 будут одинаковы­ми, и через них можно провести изотерму 1-7.

Отношение давлений для каждой ступени обычно принимается одинако­вым и равным некоторой величине x.

Схема поршневых многоступенчатых компрессоров

В случае равенства начальных температур и показателей политропы ко­нечные температуры также будут равны, т.е. Т246.

Схема поршневых многоступенчатых компрессоров

Схема поршневых многоступенчатых компрессоров

При z — ступенях компрессора для величины х получим следующую формулу

Схема поршневых многоступенчатых компрессоров

Ступенчатое сжатие с промежуточным охлаждением приближает рабочий процесс компрессора к наиболее экономичному изотермическому сжатию и чем больше число ступеней сжатия, тем больше процесс сжатия будет при­ближаться к изотермическому процессу. При равенстве температур газа на входе в каждую ступень и равенстве отношений давлений затраты работы на сжатие во всех ступенях будут одинаковыми

Схема поршневых многоступенчатых компрессоров

Схема поршневых многоступенчатых компрессоров

Работа на привод трехступенчатого компрессора при политропном сжа­тии во всех ступенях в pv-координатах может быть определена площадью фигуры 0-1-2-3-4-5-6-с-0.

Если процесс политропного сжатия до давления р6производить в одно­ступенчатом компрессоре, то затраченная на это работа будет равна площади фигуры 0-1-8-с-0. Отсюда экономия работы будет численно равна площади 2-3-4-5-6-8-2.

Видео:Поршневой компрессорСкачать

Поршневой компрессор

Поршневые компрессоры

Согласно ГОСТ 28567-90 «Компрессоры. Термины и определения» поршневым называют компрессор, в котором изменение объема рабочих камер осуществляется поршнями, совершающими линейное возвратно-поступательное движение.

Поршневые компрессоры — это один из самых распространенных типов объемных машин для сжатия воздуха.

Видео:Поршневой компрессорСкачать

Поршневой компрессор

Принцип работы поршневого компрессора

Схема поршневых многоступенчатых компрессоров

Кривошипно-шатунный механизм 5 приводится в движение двигателем. Поршень 3, перемещаясь в корпусе 4 изменяет объем рабочей камеры. При увеличении объема камеры, давление в ней снижается, всасывающий клапан 1 открывается, напорный 2 закрывается, атмосферный воздух поступает в рабочую камеру компрессора. При уменьшении объема камеры всасывающий клапан закрывается, напорный — открывается, сжатый воздух поступает к потребителю.

Видео:Устройство и принцип работы винтового компрессораСкачать

Устройство и принцип работы винтового компрессора

Типы поршневых компрессоров

По типу кривошипно-шатунного механизма

Движение от приводного двигателя к поршню передается через кривошипно-шатунный механизм. В крейцкопфном механизме поршень жёстко связан с крейцкопфом — ползуном, совершающими возвратно поступающее движение по направляющим, что позволяет разгрузить поршень от нормальных усилий. В бескрейцкопфном кривошипно-шатунном механизме такой ползун отсутствует.

Схема поршневых многоступенчатых компрессоров

По количеству ступеней повышения давления различают:

  • Одноступенчатые
  • Двухступенчатые
  • Многоступенчатые

По расположению цилиндров различают поршневые компрессоры:

Вертикальные поршневые компрессоры

Схемы вертикальных поршневых компрессоров показаны на рисунке.

Схема поршневых многоступенчатых компрессоров

По причине вертикальной установке поршня, силы инерции на фундамент и элементы конструкции компрессора действуют вертикально. Износ поршня, меньше чем у горизонтальных машин, и равномерен по окружности. Отсутствие износа уплотнений и фторопластовых колец, вызванного влиянием силы тяжести поршня, позволяет использовать вертикальные компрессоры без смазки маслом. Поэтому для поршневых безмасляных компрессоров используют вертикальную схему установки поршня.

Горизонтальные поршневые компрессоры

Горизонтальные компрессоры, чаще всего изготавливаются с крейцкопфом. Наиболее распространены однорядные Г-образные и двухрядные П-образные схемы компрессоров.

Схема поршневых многоступенчатых компрессоров

Среди достоинств горизонтальных поршневых компрессоров следует отметить простоту обслуживания, и возможность уравновешивания качающих узлов при выборе оппозитной схемы.

Угловые компрессоры

Наиболее распространенными являются угловые V-образные, W-образные, звездообразные, веерообразные бескрейцкопфные поршневые компрессоры.

Схема поршневых многоступенчатых компрессоров

Одним из главных достоинств угловых компрессоров является возможность уравновешивания инерционных сил. Кроме того, угловая компоновка делает компрессор более компактным.

Угловую схему расположения поршней часто используют на компрессорах малой производительности.

Оппозитные компрессоры

Оппозитные машины — это особый тип компрессоров, в которых поршни расположены друг напротив друга и совершают встречное движение. Достаточно широкое распространение получили оппозитные горизонтальные компрессоры.

Схема поршневых многоступенчатых компрессоров

Такая схема установки поршней позволяет уравновесить качающий узел, поэтому оппозитные компрессоры отличаются хорошими динамическими характеристиками. Это позволяет увеличить частоту вращения приводного вала в 2 — 3 раза по сравнению с обычным горизонтальным компрессором.

Видео:Поршневой воздушный компрессорСкачать

Поршневой воздушный компрессор

Индикаторная диаграмма поршневого компрессора

Индикаторная диаграмма поршневого компрессора — графическая зависимость давления в полости цилиндра от положения поршня. Индикаторная диаграмма поршневого компрессора показана на рисунке.

Схема поршневых многоступенчатых компрессоров

Линия ab на индикаторной диаграмме показывает изменение давления при всасывании воздуха, линия cd показывает изменение давления в камере компрессора при нагнетании, линия bc — изображает процесс сжатия газа, линия da — изображает процесс расширения газа оставшегося в мертвом объеме.

Мертвый объем компрессора – это пространство в рабочей камере, из которого поршнем не может быть вытеснен газ. Мертвый объем, складывается из объемов каналов, зазоров между поршнем и крышкой, клапанами и корпусом. Скачкообразные изменения давления в начале процессов всасывания и нагнетания связаны с динамическими процессами, происходящими во время открытия клапанов.

Расчет производительности

Объемную производительность при теоретическом процессе можно вычислить по формуле:

Учитывая сжимаемость газа, при расчетах часто используют понятие массового расхода. Массовую производительность при теоретическом цикле можно вычислить по формуле:

Видео:Структура поршневого холодильного компрессора BitzerСкачать

Структура поршневого холодильного компрессора Bitzer

Многоступенчатые компрессоры

Схема многоступенчатого компрессора показана на рисунке.

Читайте также: Полусинтетическое масло prorab 0111 для воздушных компрессоров

Схема поршневых многоступенчатых компрессоров

После сжатия в первом цилиндре воздух поступает в охладитель, а затем на вторую ступень сжатия.

Многоступенчатые компрессоры имеют следующие преимущества:

  • Меньшая температура сжатого газа
  • Меньше усилие на поршне. На ступень высокого давления поступает уже сжатый воздух, поэтому для размер поршня второй ступени может быть уменьшен. Суммарное усилие на нескольких поршнях многоступенчатого компрессора меньше чем усилие на поршне одноступенчатого компрессора при равных параметрах нагнетания.
  • Более экономная работа.

В многоступенчатом компрессоре, газ после сжатия охлаждается до первоначальной температуры. Поэтому работа многоступенчатого сжатия будет равна сумме работ в одноступенчатых циклах. На рисунке показана P-V диаграмма многоступенчатого компрессора.

Схема поршневых многоступенчатых компрессоров

P-V диаграмма одноступенчатого компрессора показана на рисунке.

Схема поршневых многоступенчатых компрессоров

Сравнив две диаграммы можно сделать вывод об экономичности многоступенчатого сжатия.

Видео:Компрессор поршневой 2ВМ4Скачать

Компрессор поршневой 2ВМ4

Применение поршневых компрессоров

Производительность поршневых компрессоров может достигать 200 кубометров в минуту, дальнейшее увеличение производительности ограничено чрезмерным возрастанием массы и размеров подвижных элементов компрессора.

Степень повышения давления одной ступенью поршневого компрессора обычно находится в интервале от 3 до 5, при использовании многоступенчатых компрессоров, степень повышения давления может увеличиваться в десятки раз, например в шестиступенчатом компрессоре можно получить степень сжатия до 10000.

Видео:Центробежный компрессорСкачать

Центробежный компрессор

Конструктивное устройство различных типов компрессоров

Видео:9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

Поршневые компрессоры

На рис. 1.2 показаны типовые конструктивные схемы поршневых компрессоров: крейцкопфные — с двухсторонним всасыванием и бескрейцкопфные — одностороннего всасывания (мощностью до 100 кВт).

По расположению цилиндров поршневые компрессоры подразделяются на вертикальные, горизонтальные и угловые, К вертикальным относятся машины с цилиндрами, расположенными вертикально (рис. 1.9), к горизонтальным — с цилиндрами, расположенными горизонтально (рис. 1.2). При горизонтальном расположении цилиндры могут быть размещены по одну сторону коленчатого вала, такие компрессоры называются горизонтальными с односторонним расположением цилиндров; а по обе стороны вала — горизонтальными с двухсторонним расположением цилиндров (рис. 1.2).

К угловым компрессорам относятся машины с цилиндрами, расположенными в одних рядах вертикально, в других — горизонтально. Такие компрессоры называются прямоугольными. К угловым компрессорам относятся машины с наклонными цилиндрами, установленными У-образно и Ш-образно (компрессоры называются соответственно У- и Ш-образными).

Прогрессивным в развитии поршневых компрессоров является переход на оппозитное исполнение компрессоров крупной и средней производительности. Оппозитные компрессоры, представляющие собой горизонтальные машины с встречным движением поршней и расположением цилиндров по обе стороны вала, отличаются высокой динамической уравновешенностью, меньшими габаритами и массой. Благодаря своим преимуществам оппозитные компрессоры практически полностью вытеснили традиционный тип крупного горизонтального компрессора.

Для машин малой и средней производительности основным является прямоугольный тип компрессора и компрессора с У-образным расположением цилиндров.

По числу ступеней сжатия компрессоры различаются одно-, двух- и многоступенчатые. Многоступенчатое сжатие вызывается необходимостью ограничить температуру сжимаемого газа (рис. 1.10).

Например, при адиабатном сжатии в одном цилиндре до избыточного давления 0,3 МПа температура сжимаемого воздуха достигает 453 К. Трущиеся пары компрессора (поршни, цилиндры, сальники) смазываются маслом, которое при высоких температурах разлагается, образуя нагар. В воздушных компрессорах возникает опасность воспламенения и взрыва масляного нагара, накапливающегося в трубопроводах, на крышках цилиндров и поверхностях клапанов, поэтому температура нагнетаемого воздуха не должна превышать 453 К.

На схеме многоступенчатого компрессора (рис. 1.10) газ в цилиндре I ступени сжимается от давления всасывания до некоторого промежуточного давления, затем проходит межступенный холодильник I ступени, в котором его температура снижается от температуры нагнетания до температуры всасывания, и направляется в цилиндр II ступени. Здесь газ сжимается до более высокого давления, проходит следующий межступенный холодильник и направляется в цилиндр III ступени и т. д.

Видео:Компрессор FUBAG OLS 280/50 CM2 31381. Причина поломки. Важно знать о безмасляных компрессорах.Скачать

Компрессор FUBAG OLS 280/50 CM2 31381. Причина поломки. Важно знать о безмасляных компрессорах.

Поршневые компрессоры с лабиринтным уплотнением

Компрессоры выполняются без поршневых колец и без смазки (рис. 1.11), уплотнение достигается с помощью канавок, нарезанных на поверхностях поршня и цилиндра. Уплотнение цилиндра и поршня также лабиринтного типа (рис. 1.12).

Лабиринт, уменьшающий утечку газа, выполняется в виде круговых канавок. Зазоры в лабиринтах выбираются минимально возможными с учетом температурных деформаций цилиндра. Необходимо учитывать, что утечка пропорциональна диаметру поршня, скорости звука в газе при температуре в цилиндре и отношению давлений до и после лабиринта. Относительная утечка газа, выраженная в долях производительности компрессора, обратно пропорциональна средней скорости поршня. Поэтому для уменьшения влияния утечек компрессоры с лабиринтным уплотнением выполняются быстроходными, со скоростью движения поршня более 4 м/с. Для сокращения утечек газа в атмосферу сальники выполняются графитовыми с малыми зазорами и с лабиринтными канавками на внутренней поверхности. При таком устройстве контакт между штоком и сальником не вызывает надиров.

При сжатии газов, выход которых в атмосферу допустить нельзя, к сальникам подводится под давлением воздух, азот или другой безвредный газ. Допустимый радиальный зазор между поршнем и цилиндром зависит от диаметра цилиндра и находится в пределах от 0,05 до 0,2 мм, причем для цилиндров среднего диаметра составляет около 0,1 мм. В связи с малым зазором важно такое устройство рубашки водяного охлаждения цилиндра, при котором минимальны температурные деформации, вызванные различным нагревом стенок цилиндра у всасывающих и нагнетательных клапанов. По той же причине поршневой шток должен быть достаточно жестким, не допускающим значительных вибраций.

Компрессоры с лабиринтным уплотнением выпускаются одноступенчатыми и многоступенчатыми, мощностью до 750 кВт на конечное давление до 10 МПа. Диаметр поршня с лабиринтным уплотнением 525 мм. Стоимость этих компрессоров вцше компрессоров с графитовым уплотнением, не требующих столь высокой точности изготовления. Поэтому применение их целесообразно главным образом для сжатия совершенно сухих газов (хлор, кислород) или в тех случаях, когда нежелательно присутствие в газе следов графита.

Преимуществами компрессоров с лабиринтным уплотнением являются также надежность их работы и отсутствие надобности в смене поршневых колец. Кроме того, они обеспечивают подачу совершенно чистого газа без его увлажнения, вследствие чего нет необходимости в фильтрации и удалении влаги после сжатия. В связи с этим компрессоры, предназначенные для сжатия кислорода, могут быть выполнены из обычных металлов, так как сжатию подвергается сухой кислород, который не вызывает их коррозии. Утечка газа через лабиринты снижает экономичность этих компрессоров, но потеря в экономичности частично компенсируется отсутствием поршневых колец, трение которых поглощает около 5 % потребляемой компрессором энергии.

Видео:Звук работы безмасляного компрессораСкачать

Звук работы безмасляного компрессора

Мембранные компрессоры

Мембранные компрессоры — машины объемного типа, у которых вместо движущегося в цилиндре поршня используется колеблющаяся мембрана, зажатая по контуру между крышкой и опорной плитой компрессора. Воздействие на мембрану производится механически или гидравлически. При механическом воздействии (см. рис. 1.4) эксцентрик, расположенный на приводном валу, обеспечивает возвратно-поступательное движение штока с диском, в котором закреплена’ мембрана.

Читайте также: Компрессор workmaster wc 25 50a

Гидравлическое воздействие на мембрану показано на рис. 1.13, где колебательное движение мембраны является результатом меняющегося давления жидкости на нижнюю сторону мембраны. Меняющееся давление жидкости на нижней стороне мембраны обеспечивается поршневым механизмом, рабочий объем которого согласован с объемом жидкости, требуемом на рабочем ходу компрессора.

Мембранные компрессоры с механическим воздействием применяются для малых производительностей при меняющихся давлениях. Мембранные компрессоры с гидравлическим воздействием применяются для обеспечения высоких давлений.

Видео:Курс ""Турбомашины". Раздел 7.5 Многоступенчатые компрессоры (лектор Батурин О.В.)Скачать

Курс ""Турбомашины". Раздел 7.5 Многоступенчатые компрессоры (лектор Батурин О.В.)

Двухроторные компрессоры (типа Рутс)

Двухроторный компрессор (типа Рутс) представляет собой бесклапанную машину объемного типа. Два идентичных, обычно симметричных, двухлопастных ротора вращаются в противоположных направлениях внутри корпуса, составленного из двух полуцилиндров. Зазоры между вращающимися роторами устанавливаются с помощью синхронизирующих шестерен, расположенных снаружи корпуса. Сжатие происходит обратным потоком газа из области нагнетания в тот момент, когда лопасть ротора соединяет отсеченную порцию газа с областью нагнетания. Из р, V-диаграмм видно (рис. 1.14), что сжатие газа таким способом малоэкономично и обеспечивает низкую степень повышения давления. Обычно компрессоры типа Руте выполняются в одноступенчатом исполнении (возможно двух- и трехступенчатое исполнение). Принцип работы компрессора показан на рис. 1.15.

Широкое применение машин Рутс в ряде отраслей промышленности (в последнее время в вакуумной технике) объясняется простотой их конструкций и эксплуатации, отсутствием трущихся элементов и смазки в проточной части, уравновешенностью, долговеч г ностью.

Машины типа Рутс выпускаются производительностью от нескольких литров в минуту до 2000 м³/ /мин, с давлением нагнетания до 0,15 МПа.

Время безостановочной работы этих машин в основном зависит от срока службы масла в подшипниках, а если возможна замена масла без остановки, то от времени работы подшипников, т.е. до 50—100 тыс.ч.

Основные направления развития машин типа Рутс:

  • повышение производительности;
  • повышение перепадов рабочего давления;
  • использование в режиме газо-дувок при низких температурах газа на входе (до —160 °С); моноблочность исполнения; снижение металлоемкости за счет увеличения относительной длины проточной части;
  • обеспечение высокой герметичности машин (использование встроенных экранированных электродвигателей).

Видео:Работа винтового компрессора, его принцип действия и устройство.Скачать

Работа винтового компрессора, его принцип действия и устройство.

Ротационно-пластинчатые компрессоры

Ротационно-пластинчатые компрессоры отличаются компактностью, незначительным падением производительности при увеличении давления нагнетания или вакуума.

Компрессор (см. рис. 1.8), состоит из цилиндрического корпуса /, закрытого торцевыми крышками. Корпус имеет всасывающий 7 и нагнетательный 5 патрубки. Внутри корпуса эксцентрично расположен ротор 2, в пазы которого вставлены подвижные пластины 3.

При вращении ротора пластины 3 под действием центробежной силы, перемещаясь в пазах, прижимаются к цилиндрической поверхности корпуса 1 и разделяют рабочее пространство между ротором и внутренней поверхностью цилиндра на отдельные камеры 8 разных размеров. Камеры, расположенные слева от вертикальной плоскости, которая проходит через ось цилиндра, сообщаются со всасывающим патрубком 7. При вращении их объем увеличивается и заполняется газом; так осуществляется процесс всасывания.

При достижении максимального объема камера разобщается со всасывающим патрубком. При дальнейшем движении теперь замкнутой камеры объем ее уменьшается, а давление газа увеличивается. Происходит процесс сжатия до тех пор, пока передняя пластина камеры не пройдет кромку нагнетательного окна цилиндра.

Камера оказывается сообщенной с нагнетательным патрубком 5, и происходит процесс нагнетания. Когда объем достигает минимальной величины, камера разобщается с нагнетательным патрубком. Дальнейшее движение камеры в левую половину цилиндра приводит ее к сообщению со всасывающим патрубком, и процессы всасывания, сжатия и нагнетания повторяются.

В корпусе выполнена рубашка для охлаждения 4 и установлен клапан 6. Компрессоры используются для питания сжатым воздухом пневмоинструмента, в системах пневматического транспорта, в качестве компрессоров и вакуум-насосов в различных отраслях промышленности для сжатия воздуха и технологических газов.

Ротационно-пластинчатые компрессоры выпускаются со стальными пластинами и разгрузочными кольцами, уменьшающими износ пластин, а также с пластинами из несмазываемых антифрикционных материалов.

Двухступенчатые компрессоры выполняются последовательным соединением одноступенчатых машин; привод от двигателя — непосредственно через упругую муфту. Машины работают до 10 лет без замены каких-либо деталей.

Видео:Многоступенчатый центробежный компрессорСкачать

Многоступенчатый центробежный компрессор

Жидкостно-кольцевые компрессоры

Жидкостно-кольцевой объемный компрессор имеет ротор с колесом лопастного типа, эксцентрично расположенный в цилиндрическом корпусе (рис. 1.16). Зазор между периферийным диаметром вращающихся лопастей колеса ротора и внутренним диаметром цилиндра корпуса из-за эксцентричности посадки — переменный. Цилиндр частично заполнен жидкостью. Жидкость под действием лопастей ротора вращается относительно цилиндра корпуса с постоянной угловой скоростью, образуя жидкое кольцо, внутренняя поверхность которого имеет разные расстояния от оси ротора. Поэтому объемы газа между лопастями и жидким кольцом изменяются в течение оборота вала, и, таким образом, осуществляется процесс всасывания и нагнетания газа. Охлаждение сжимаемого газа осуществляется непосредственным контактом с жидкостью, процесс сжатия приближается к изотермическому.

Компрессоры используются в различных отраслях промышленности, что объясняется простотой конструкции и эксплуатации, низкой стоимостью изготовления, высокой надежностью и низким уровнем шума, отсутствием масла в сжимаемом газе и трущихся элементов в рабочей полости, простотой герметизации машины, практически изотермическим процессом сжатия, возможностью откачки и сжатия токсичных, взрывоопасных, легко-разлагающихся, полимеризующихся и воспламеняющихся газов, паров и жидкостно-газовых смесей, в том числе агрессивных и загрязненных механическими примесями.

Жидкостно-кольцевой компрессор легко вписывается в любой технологический процесс, так как в нем можно использовать различные по физико-химическим свойствам рабочие жидкости и конструкционные материалы.

Указанные достоинства определили использование компрессора во многих отраслях промышленности (химической, нефтяной, целлюлозно-бумажной, горнодобывающей, пищевой, машиностроительной и др.) и сфере обслуживания (озонирование воды, вентиляция, вакуумная уборка).

Современные жидкостно-кольцевые компрессорные и вакуумные установки поставляются полностью укомплектованными в моноблочном бесфундаментном исполнении с полной заводской готовностью к эксплуатации. Единичная производительность увеличилась со 150 до 400 м³/мин, давление нагнетания с 0,15 до 0,25 МПа, а время гарантируемых межремонтных пробегов с 3—6 до 10—20 лет. Увеличился выпуск многоступенчатых жидкостно-кольцевых компрессорных моноблочных агрегатов. Существенно расширился диапазон использования компрессоров: тепловые и атомные станции, криогенная техника, вакуумная сушка и системы пнев-моуправления.

В конструкциях жидкостнокольцевых компрессоров Широко используют прокат для изготовления корпусов, лопаток рабочих колес и других деталей; сварные конструкции корпусов, роторов, всасывающих и нагнетательных патрубков; коррозионно-стойкие конструктивные материалы — титан, углеграфит, легированные стали.

Видео:Основная Поломка и Особенности Ремонта Китайского КомпрессораСкачать

Основная Поломка и Особенности Ремонта Китайского Компрессора

Винтовые компрессоры

Конструкция винтового компрессора запатентована в 1934 г.

Надежность в работе, малая удельная металлоемкость и габаритные размеры предопределили их широкое распространение. Компрессоры конкурируют о другими типами объемных компрессорных машин, практически полностью вытеснив их в передвижных компрессорных станциях, судовых холодильных установках.

Читайте также: Направление вращения поршневых компрессоров

Типовая конструкция компрессора сухого сжатия, работающего без подачи масла в рабочую полость, показана на рис. 1.17. Компрессор имеет два винтовых ротора. Ведущий ротор 2 с выпуклой нарезкой соединен непосредственно или через зубчатую передачу с двигателем. На ведомом роторе 1 нарезка с вогнутыми впадинами. Роторы расположены в горизонтально-разъемном корпусе 4, имеющем один (вертикальный по торцу всасывания) или несколько разъемов. В корпусе выполнены расточки под винты, подшипники и уплотнения, а также камеры всасывания и нагнетания.

Высокие частоты вращения винтовых компрессоров определяют применение в них опорных и упорных подшипников скольжения.

Между подшипниковыми камерами и винтовой частью роторов, в которой сжимается газ, расположены узлы уплотнений. В большей части конструкций они представляют собой уплотнения, состоящие из набора графитовых или баббитовых колец. В камеры между группами колец подается запирающий газ, препятствующий попаданию масла из подшипниковых узлов в сжимаемый газ, а также газа в подшипниковые камеры.

Касание винтов роторов при отсутствии смазки недопустимо, поэтому между ними оставляется минимальный зазор, обеспечивающий безопасную работу компрессора, а синхронная частота вращения ведущего и ведомого роторов обеспечивается наружными синхронизирующими шестернями 3. На рис. 1.18 схематично изображен принцип работы винтового компрессора.

Винтовые поверхности роторов и стенок корпуса образуют рабочие камеры. При вращении роторов объем камер увеличивается, когда выступы роторов удаляются от впадин и происходит процесс всасывания (1.18,а). Когда объем камер достигает максимума, процесс всасывания заканчивается и камеры оказываются изолированными стенками корпуса и крышек от всасывающего и нагнетательного патрубков (рис. 1.18,6).

При дальнейшем вращении во впадину ведомого ротора начинает внедряться сопряженный выступ ведущего ротора. Внедрение начинается у переднего торца и постепенно распространяется к нагнетательному окну. С некоторого момента времени обе винтовые поверхности объединяются в общую полость (рис. 1.18,6), объем которой непрерывно уменьшается благодаря поступательному перемещению линии контактирования сопряженных элементов в направлении к нагнетательному окну. Дальнейшее вращение роторов приводит к вытеснению газа из полости в нагнетательный патрубок (рис. 1.18, в). Из-за того что частота вращения роторов значительна и одновременно существует несколько камер, компрессор создает равномерный поток газа.

Отсутствие клапанов и неуравновешенных механических сил обеспечивает винтовым компрессором возможность работать с высокими частотами вращения, т. е. получать большую производительность при сравнительно небольших внешних габаритах.

Маслозаполненные компрессоры имеют меньшие скорости вращения, чем компрессоры «сухого сжатия». Подача масла в рабочую полость винтового компрессора преследует следующие цели: уменьшение перетечек через внутренние зазоры, смазка винтового зацепления роторов и охлаждение сжимаемого газа.

Видео:Все о компрессорахСкачать

Все о компрессорах

Центробежные компрессоры

Центробежные компрессоры по сравнению с поршневыми имеют малые габариты и массу, приходящиеся на единицу производительности, обеспечивают подачу сжатого газа без пульсаций, в них отсутствуют поступательно движущиеся части и, следовательно, отсутствуют инерционные усилия, передаваемые на фундамент. Сжатие газа происходит без загрязнения его маслом, так как в зоне сжатия нет трущихся пар, к которым необходимо было бы подводить смазку.

По конструктивным особенностям центробежный компрессор экономичен при больших производительностях (более 120 м³/мин).

На рис. 1.19 показана принципиальная схема центробежного компрессора. Центробежные компрессоры имеют несколько ступеней, количество которых зависит от требуемого повышения давления. Под ступенью центробежного компрессора понимают сочетание рабочего колеса 3, диффузора 4 и обратного направляющего аппарата 5. При вращении рабочего колеса 3 на стороне входа у него образуется разрежение, вследствие чего газ поступает по всасывающему подводу 1 в каналы между лопатками рабочего колеса 3. В рабочем колесе под действием центробежных и газодинамических сил, возникающих при обтекании лопастей, происходит повышение давления и увеличение скорости газа. Поступив из рабочего колеса в диффузор 4, газ значительно снижает свою скорость и повышает давление.

В следующую ступень газ повышенного давления поступает по обратному направляющему аппарату 5. Пройдя все ступени, газ попадает в выходную улитку 6 и направляется в нагнетательный трубопровод.

Ротор 2 компрессора установлен в подшипниках 7.

Видео:Курс ""Турбомашины". Раздел 7.8 Зачем и как регулировать многоступенчатые компрессоры (Батурин О.В.)Скачать

Курс ""Турбомашины". Раздел 7.8 Зачем и как регулировать многоступенчатые компрессоры (Батурин О.В.)

Осевые компрессоры

В осевых компрессорах (рис. 1.20) газ через входной патрубок 1 поступает в проточную часть компрессора и перемещается последовательно от лопаток входного направляющего аппарата 3, через группу ступеней, спрямляющий аппарат 6, диффузор 7 и выходной патрубок 9. Рабочие колеса 4 ступеней вместе с валом, на котором они насажены, образуют ротор; направляющие аппараты 5 вместе с корпусом, в котором они закреплены, — статор. Ротор опирается на подшипники 8, которые обычно выполняются в виде подшипников скольжения.

Входной патрубок служит для равномерного подвода газа из подводящего трубопровода к кольцевому конфузору, который предназначен для ускорения потока перед входным направляющим аппаратом и создания равномерного поля скоростей и давлений.

Видео:Так умирают компрессорыСкачать

Так умирают компрессоры

Лопастные компрессоры

По принципу действия лопастные компрессоры относятся к классу. динамических газовых машин. Приращение кинетической и потенциальной энергии перекачиваемой газовой среды происходит в результате взаимодействия потока среды с вращающейся решеткой лопаток рабочего колеса. После рабочего колеса газ попадает в отводящее устройство, в котором происходит преобразование кинетической энергии потока газа в энергию давления. Приращение энергии газового потока в проточной части компрессора обусловливает сжатие газа при непрерывном изменении термодинамических параметров состояния р, V, Т.

В радиальном компрессоре (рис. 5.1,6) поток поступает в рабочее колесо, двигаясь параллельно оси, поворачивается в нем на 90° и выходит из колеса перпендикулярно оси ротора. В диагональном компрессоре (рис. 5.1,в) поток выходит из рабочего колеса под углом у к оси ротора. В осевом компрессоре (рис. 5.1, г) поток в зоне рабочего колеса движется параллельно оси вращения ротора.

Лопастные компрессоры в зависимости от развиваемого давления делятся на:

  • вентиляторы;
  • нагнетатели (газодувки);
  • компрессоры.

Несмотря на разнообразие конструктивных схем и исполнений, ступень компрессора состоит из ряда сходных по назначению элементов (рис. 5.3).

Газ к рабочему колесу подводится с помощью подводящего устройства (подвода) 1, 7, конструктивное исполнение которого зависит от схемы компрессора.

Рабочее колесо 8 осевого компрессора (рис. 5.3,в) представляет собой вращающуюся втулку, на которой закреплены профилированные лопатки. Отводом осевого компрессора служит выправляющий аппарат 9, который представляет собой круговую решетку неподвижных профилированных лопаток. Для дополнительного преобразования кинетической энергии в энергию давления за выправляющим аппаратом может быть выполнен кольцевой диффузор.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📹 Видео

    Одноразовый безмасляный компрессор sturmСкачать

    Одноразовый безмасляный компрессор sturm

    Принцип работы поршневых компрессоров ManeuropСкачать

    Принцип работы поршневых компрессоров Maneurop

    Предохранительные, аварийные клапаны для винтовых и поршневых компрессоровСкачать

    Предохранительные, аварийные клапаны для винтовых и поршневых компрессоров
Поделиться или сохранить к себе:
Технарь знаток