Системная, или материнская, плата (motherboard – MB) – это важнейшая часть компьютера, содержащая основные электронные компоненты машины. С помощью материнской платы осуществляется взаимодействие между устройствами компьютера.
МВ представляет собой печатную плату, на которой располагаются некоторые микросхемы, остальные компоненты объединяются при помощи системной шины и устанавливаются на дополнительных платах (платах или картах расширения), помещаемых в специальные разъемы (слоты), имеющиеся на материнской плате. Компьютеры, использующие такую технологию, относятся к системам с шинной архитектурой.
Рис. 14. Структурная схема системной платы
Характеристики системных плат:
· Процессорный разъем (Intel – Socket 370, 423, 478, 775; AMD – Socket А, 754, 939. См. Приложение IV – процессоры Intel и Приложение V – процессоры AMD).
· Форм- фактор (типоразмер) определяет размеры системной платы.
– ATX (Advanced Technology eXtended) – один из самых распространенных форматов материнских плат для ПК, идеально подходит для построения домашнего компьютера. Платы ATX имеют размеры 30,5х24,4 см и поддерживают семь слотов расширения.
– mATX (micro ATX) – несколько уменьшенный по размерам стандарт ATX. Подходит для построения офисных компьютеров, когда не требуется много слотов для расширения системы. Платы mATX имеют размеры 24,4х24,4 см и поддерживают четыре слота расширения.
– EATX (Extended ATX) материнские платы отличаются от ATX размерами (до 30,5х33,0 см), требуют специальных блоков питания (24 контакта, в отличие от 20 для ATX) и используются в основном для серверов.
– BTX (Balanced Technology Extended) – новый стандарт, который приходит на смену ATX. При разработке этого форм-фактора большое внимание уделялось эффективному охлаждению установленных на плате элементов. BTX идеально подходит для построения миниатюрных компьютеров. Материнские платы BTX имеют размеры 26,7х32,5 см и поддерживают семь слотов расширения.
– mBTX (micro BTX) – уменьшенный вариант BTX. Размеры таких плат составляют 26,7х26,4 см. mBTX поддерживают четыре слота расширения.
– SSI EEB (Server Standards Infrastructure Entry Electronics Bay). Материнские платы этого стандарта обычно служат для построения серверов. Разъемы для подключения блока питания имеют 24+8 контактов. Габариты таких плат составляют 30,5х33,0 см.
– SSI CEB (SSI Compact Electronics Bay). Материнские платы этого стандарта обычно служат для построения серверов. Разъемы для подключения блока питания имеют 24+8 контактов. Габариты таких плат составляют 30,5х25,9 см.
· Чипсет (chipset) – набор микросхем, реализующих все функции связи основных элементов. Чипсеты состоят из двух микросхем с условными названиями северный мост (North bridge) и южный мост (South bridge). Северный мост обеспечивает управление системной шиной процессора (FSB), шиной оперативной памяти, шиной AGP и интерфейсом связи с южным мостом (либо с шиной PCI в старых чипсетах). Южный мост состоит из контроллеров ввода-вывода, обеспечивает подключение шин PCI, ISA, ATA, USB, памяти CMOS и BIOS.
· Тип памяти и частота работы шины памяти – SDRAM, DDR, DDR-II, RDRAM.
· Число слотов памяти и максимальное емкость поддерживаемой памяти.
· Кэш-память второго и третьего уровней (Cache L2, Cache L3). Обычно кэш-память 2-го уровня устанавливается в один корпус с процессором, а кэш-память 3-го уровня – на материнскую плату.
· BIOS (Basic Input-Output System).
· CMOS память – размещается на системной плате или в составе чипсета. Питается от аккумулятора (батарейки), поэтому энергонезависима (сохраняет информацию при отключении компьютера от сети). Память хранит информацию о параметрах многих устройств, входящих в компьютер, а также о системном времени. Информация может изменяться.
Звуковая карта, видеокарта, адаптер локальной сети – эти устройства могут быть интегрированы в системную плату.
Шина (bus) – группа проводников, соединяющих несколько устройств и передающих сигналы между ними.
· разрядность или ширина шины;
· пропускная способность = частота × разрядность;
· количество подключаемых устройств;
Операции на шине называют транзакциями. Основные виды транзакций – транзакции чтения и транзакции записи.
Когда два устройства обмениваются информацией по шине, одно из них должно инициировать обмен и управлять им. Такое устройство называют ведущим (bus master). Устройства, не обладающие возможностями инициирования транзакций, называются ведомыми (bus slave).
1. Системная шина, или шина «процессор-память» (Front-Side Bus, FSB), – шина между процессором и основной памятью (или северным мостом чипсета).
2. Шины расширений (Expansion Bus) – шины общего назначения, позволяющие подключать разнообразные устройства (звуковую карту,сетевую карту, модем, ТВ-тюнер и др.). Слоты шин расширения расположены на системной плате.
3. Локальные шины (Local Bus) – шины для подключения небольшого количества устройств определенного класса, преимущественно видеосистем.
4. Периферийные шины (Peripheral Bus) – шины для внешних запоминающих (винчестер, CD/DVD-дисковод) и периферийных медленнодействующих устройств (принтер, сканер, клавиатура, мышь).
Шина состоит из следующих частей:
Кроме того, обычно присутствует шина питания.
Любая транзакция начинается с выставления ведущим устройством адреса. На шине адреса могут выдаваться адреса ячеек памяти, номера регистров процессора, адреса портов ввода-вывода. Число линий, выделенных для передачи адреса, определяет максимально возможный размер адресного пространства.
Размер адресного пространства = 2n, где n – число адресных линий.
Пример. Первый персональный компьютер IBM PC с процессором Intel 8088 содержал 20-разрядную шину адреса. Следовательно, процессор мог обращаться к 220= 1 Мбайт памяти.
Пример. Процессор Pentium 4 имеет 36-разрядную шину адреса, что позволяет адресовать 236= 64 Гбайт памяти.
Для передачи данных служит шина данных. Ширина (разрядность) шины данных определяет количество битов, которое может быть передано по шине за одну транзакцию (цикл шины). Цикл шины следует отличать от периода тактовых импульсов – одна транзакция на шине может занимать несколько тактовых импульсов. Пропускная способность определяет скорость передачи данных именно по шине данных.
Пример. Шина расширения ISA (компьютер IBM PC) содержит 16-разрядную шину данных, частота шины – 8 МГц. Пропускная способность = 2 байта * 8 МГц = 16 Мбайт/с.
Пример. В системной шине FSB процессора Pentium 4 ширина шины данных – 64 разряда, частота до 800 МГц. Пропускная способность = 8 байт
Можно увеличить пропускную способность шин двумя способами:
1) Увеличить ширину шины данных. Но в этом случае увеличиваются взаимные помехи, наводимые сигналами в одном проводнике на сигналы в другом, и наоборот.
2) Увеличить частоту работы шины. При этом усиливается явление перекоса. Явление перекоса состоит в том, что сигналы, одновременно посланные по разным проводникам шины, достигают пункта назначения в разное время (вследствие отличия характеристик проводников шины и электронных схем, через которые проходят сигналы).
По шине управления передаются следующие сигналы:
В некоторых шинах линии адреса и данных объединены в единую мультиплексируемую шину адреса/данных. Сначала линии шины используются для передачи адреса, а затем те же самые линии – для передачи данных. Объединение линий сокращает ширину и стоимость шины, но замедляет ее работу.
Пример. В шине расширения PCI используются 64 объединенные линии для данных и адреса.
По количеству проводников для передачи данных различают последовательные и параллельные шины. В последовательных шинах (serial bus) для передачи данных используют одну линию, по которой биты передаются один за другим – последовательно. В параллельных шинах присутствуют несколько проводников, по которым данные могут передаваться одновременно.
Пример. Периферийная шина для подключения внешних накопителей ATA (IDE) – параллельная, в ней 40 или 80 проводов, а новая шина Serial ATA – последовательная, в ней 7 проводов (пара на передачу данных, пара – на прием, 3 – «земля»).
Читайте также: Шина медная шмт 5х20 ток
Рассмотрим последовательность событий, происходящих на шине во время одной транзакции (рис. 15). Сначала устройство, которое является ведущим (Bus master), получает управление шиной, после чего оно может выдавать на шину свои данные. Через некоторый интервал времени, определяемый скоростью распространения сигналов по шине, данные достигают ведомого устройства (Bus slave). Скорость распространения
сигналов обычно не превышает 70% скорости света (300 000 км/с). После появления данных на ведомом устройстве выдерживается пауза, для того чтобы сигнал стал устойчивым. Затем сигнал может быть считан и удален с шины.
На рис. 15 приведены примерные значения интервалов для шины частотой 133 МГц.
Рис. 15. Диаграмма пересылки данных
На роль ведущего могут претендовать одновременно несколько устройств (центральный процессор, сопроцессор, устройства ввода-вывода), однако управлять шиной в каждый момент времени может только одно из них. Чтобы исключить конфликты вводится механизм арбитража.
Арбитраж может быть централизованным и децентрализованным. При централизованном арбитраже в системе имеется специальное устройство – центральный арбитр, который в соответствии с приоритетами каждого устройства предоставляет им доступ к шине. При децентрализованном арбитраже каждое ведущее устройство содержит блок управления доступом к шине. При совместном использовании шины такие блоки взаимодействуют друг с другом, разделяя доступ.
Пример. Шина расширения PCI является шиной с централизованным арбитражем. Периферийная шина SCSI – шина с децентрализованным арбитражем.
Вследствие явления перекоса шины все устройства, использующие шины, должны «знать», когда адреса, данные и управляющие сигналы следует считать достоверными. Метод, выбираемый для информирования одостоверности адресов, данных и сигналов управления шины, называется
Существует два основных класса протоколов:
1) Синхронные – все сигналы «привязаны» к импульсам тактового генератора. Изменение управляющих сигналов совпадает с фронтом или спадом тактового импульса (см. SDRAM).
2) Асинхронные – начало очередного события на шине определяется не тактовым импульсом, а предыдущим событием (см. виды памяти: традиционная DRAM, FPM, EDO и BEDO).
В прошлом разработчики ЭВМ предпочитали асинхронные шины, сейчас чаще используются синхронные. Современные синхронные шины несколько быстрее асинхронных, поэтому применяются в канале
«процессор-память», а асинхронные – для периферийных устройств.
Пример. Системная шина Pentium 4, так же как шина расширения PCI, является синхронной, периферийная шина ATA (IDE) асинхронная, а шина SCSI может работать как по синхронному, так и по асинхронному протоколам.
Дата добавления: 2016-12-26 ; просмотров: 3340 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
- Компьютерная Энциклопедия
- Архитектура ЭВМ
- Компоненты ПК
- Интерфейсы
- Мини блог
- Самое читаемое
- Системные платы
- Типы, назначение и функционирование шин
- Типы, назначение и функционирование шин
- Шина процессора
- Общие сведения о шине процессора
- Шина процессора на основе hub-архитектуры
- Пропускная способность шины процессора
- Шина памяти
- Назначение разъемов расширения
- Назначение разъемов расширения
- 🔥 Видео
Видео:03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Компьютерная Энциклопедия
Архитектура ЭВМ
Компоненты ПК
Интерфейсы
Мини блог
Самое читаемое
534000-003 ymckt набор для печати datacard ymckt.
Видео:Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!Скачать
Системные платы
Видео:Схемы материнских плат. Где искать. Чем смотреть.Скачать
Типы, назначение и функционирование шин
Видео:Материнская плата: устройство и принцип работы. Что такое VRM, сокет, чипсет, BIOS. Разъёмы и схемыСкачать
Типы, назначение и функционирование шин
Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.
Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.
- Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Она используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 или 1066 МГц и имеет ширину 64 разряда (8 байт).
- Шина AGP. Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x), обеспечивает пропускную способность до 2133 Мбайт/с и предназначается для подключения видеоадаптера. Она соединена с северным мостом или контроллером памяти (MCH) набора микросхем системной логики.
- Шина PCI-Express. Третье поколение шины PCI. Шина PCI-Expres — это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 или 5 Гбит/с в обоих направлениях (эффективное значение — 250 или 500 Мбайт/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 4 или 8 Гбайт/с в каждом направлении.
- Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.
- Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; она используется, начиная с систем на базе процессоров 486. В настоящее время существует реализация этой шины с частотой 66 МГц. Она находится под управлением контроллера PCI — компонента северного моста или контроллера MCH набора микросхем системной логики. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. Шины PCI-X и PCI-Express представляют собой более производительные реализации шины PCI; материнские платы и системы, поддерживающие эту шину, появились на рынке в середине 2004 года.
- Шина ISA. Эта 16-разрядная шина, работающая на частоте 8 МГц, впервые стала использоваться в системах AT в 1984 году (в первоначальном варианте IBM PC она была 8-разрядной и работала на частоте 5 МГц). Эта шина имела широкое распространение, но из спецификации PC99 была исключена. Реализуется с помощью южного моста. Чаще всего к ней подключается микросхема Super I/O.
Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.
В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.
Читайте также: Шины rotation 205 55 r16
Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.
Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.
Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.
Видео:МАТЕРИНСКАЯ ПЛАТА – Гид для новичковСкачать
Шина процессора
Видео:Что такое материнская плата (о комплектующих понятным языком)Скачать
Общие сведения о шине процессора
Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.
На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.
В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.
Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.
Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.
В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.
В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.
Шина процессора на основе hub-архитектуры
Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).
В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).
Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.
Читайте также: Шины michelin energy xm2 чье производство
Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.
Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.
Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).
Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.
Пропускная способность шины процессора
Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).
Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.
Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.
Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.
Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.
Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.
Видео:Диагностика материнской платы для начинающих.Скачать
Шина памяти
Шина памяти предназначена для передачи информации между процессором и основной памятью системы. Эта шина соединена с северным мостом или микросхемой Memory Controller Hub. В зависимости от типа памяти, используемой набором микросхем (а следовательно, и системной платой), шина памяти может работать с различными скоростями. Наилучший вариант, если рабочая частота шины памяти совпадает со скоростью шины процессора. Пропускная способность систем, использующих память PC133 SDRAM, равна 1066 Мбайт/с, что совпадает с пропускной способностью шины процессора, работающей на частоте 133 МГц. Рассмотрим другой пример: в системах Athlon и некоторых Pentium III используются шина процессора с частотой 266 МГц и память PC2100 DDR SDRAM, имеющая пропускную способность 2133 Мбайт/с — такую же, как и шина процессора. В системе Pentium 4 используется шина процессора с частотой 400 МГц, а также двухканальная память RDRAM со скоростью передачи данных для каждого канала 1600 или 3200 Мбайт/с при одновременной работе обоих каналов памяти, что совпадает с пропускной способностью шины процессора Pentium 4. В системах Pentium 4, содержащих шину процессора с тактовой частотой 533 МГц, могут использоваться двухканальные модули PC2100 или PC2700, параметры которых соответствуют пропускной способности шины процессора, равной 4266 Мбайт/с.
Память, работающая с той же частотой, что и шина процессора, позволяет отказаться от расположения внешней кэш-памяти на системной плате. Именно поэтому кэш-память второго и третьего уровней была интегрирована непосредственно в процессор. Некоторые мощные процессоры, к числу которых относится Intel Pentium Extreme Edition, содержат встроенную кэш-память третьего уровня объемом 2–4 Мбайт, работающую на полной частоте процессора. Самые современные процессоры, такие как Core Duo и Core 2 Quad, используют кэш-память только первого и второго уровней. Таким образом, в обозримом будущем кэш второго уровня будет оставаться наиболее распространенным типом вторичного кэша.
Примечание!
Видео:VRM. Что такое, зачем? Фазы и цепи питания.Скачать
Назначение разъемов расширения
Шина ввода-вывода позволяет процессору взаимодействовать с периферийными устройствами. Эта шина и подключенные к ней разъемы расширения предназначены для того, чтобы компьютер мог выполнить все предъявляемые запросы. Шина ввода-вывода позволяет подключать к компьютеру дополнительные устройства для расширения его возможностей. В разъемы расширения устанавливают такие жизненно важные узлы, как контроллеры накопителей на жестких дисках и платы видеоадаптеров; к ним можно подключить и более специализированные устройства, например звуковые платы, сетевые адаптеры, контроллеры SCSI и др.
Примечание!
Видео:Процесс запуска материнской платы. Power on SequenceСкачать
Назначение разъемов расширения
Шина ввода-вывода позволяет процессору взаимодействовать с периферийными устройствами. Эта шина и подключенные к ней разъемы расширения предназначены для того, чтобы компьютер мог выполнить все предъявляемые запросы. Шина ввода-вывода позволяет подключать к компьютеру дополнительные устройства для расширения его возможностей. В разъемы расширения устанавливают такие жизненно важные узлы, как контроллеры накопителей на жестких дисках и платы видеоадаптеров; к ним можно подключить и более специализированные устройства, например звуковые платы, сетевые адаптеры, контроллеры SCSI и др.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🔥 Видео
Устройство телефона. Шины данных. Микросхемы на плате. Как устроен радио модуль. Модем телефона.Скачать
CAN шина👏 Как это работаетСкачать
Гениальный способ диагностики материнской платы с помощью светодиода!Скачать
Системная шина процессораСкачать
Шина компьютера, оперативная память, процессор и мостыСкачать
Упрощенный способ диагностики линий питания материнской платыСкачать
Системные шины персонального компьютера для ...Скачать
Как читать схему . Часть 7. Power sequence for Desktop.Скачать
Шины ввода-выводаСкачать
Цепи питания VRM: Сколько реально надо? Нагрев+радиаторыСкачать
КАК работает ПРОЦЕССОР? ОБЪЯСНЯЕМСкачать