Схема ступени осевого компрессора

Осевой, как и центробежный компрессор, относится к классу динамических машин или турбокомпрессоров.

Видео:Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессораСкачать

Лекция 3 Основы рабочего процесса ВРД. Часть 1 Работа ступени осевого компрессора

Устройство и принцип работы осевого компрессора

Степень сжатия газа на одном осевом рабочем колесе, не превышает 1,3, поэтому центробежные турбокомпрессоры, как правило, изготавливаются многоступенчатыми. Число ступеней в осевых машинах может достигать 20.

Схема ступени осевого компрессора

Под ступенью осевого компрессора понимают совокупность ряда рабочих лопаток и последующий направляющий аппарат, если он имеется.

Схема осевого турбокомпрессора показана на рисунке.

Схема ступени осевого компрессора

Воздух или другой газ поступает в компрессор через всасывающий патрубок. Через входной направляющий аппарат он поступает на лопатки первой ступени. В результате воздействия лопаток на частицы газа, скорость потока увеличивается, через направляющий аппарат он поступает на вход последующей ступени, и так далее. После прохождения всех ступеней сжатый воздух, или другой газ поступает в напорную магистраль.

Рабочие лопатки

Рабочие лопатки воздействуют на поток газа, передавая ему энергию, они являются важнейшим элементом турбокомпрессора. Создание направляющих и рабочих лопаток оптимального профиля позволяет обеспечить высокий КПД осевого турбокомпрессора.

Схема ступени осевого компрессора

Рабочие лопатки могут изготавливаться совместно с промежуточным телом, или отдельно от него. Во втором случае следует обеспечить надежное крепление лопаток на вращающемся теле, т.к лопатки будут подвержены значительным нагрузкам, а наличие зазоров в соединении может привести к появлению вибрации.

Направляющие лопатки

Направляющие лопатки крепятся на неподвижной части осевого компрессора, они не подвержены воздействию центробежных сил. Направляющий аппарат позволяет достичь оптимальных характеристик потока на входе последующей ступени сжатия.

Входной направляющий аппарат

На входе осевого компрессора может быть установлен направляющий аппарат, который представляет из себя набор лопаток, закручивающих поток, в сторону вращения рабочего колеса, или в противоположную сторону в зависимости от конструктивных особенностей компрессора.

Схема ступени осевого компрессора

Видео:Центробежный компрессорСкачать

Центробежный компрессор

Комбинированный центробежно-осевой компрессор

Комбинированным называют многоступенчатый лопастной компрессор, у которого первые ступени сжатия являются осевыми, а последняя — центробежной. Комбинированный компрессор, позволяет обеспечить большую, чем при использовании осевой машины, степнь сжатия, сохраняя высокий КПД.

Схема комбинированного центробежно-осевого компрессора показана на рисунке.

Схема ступени осевого компрессора

Газ подводится к всасывающему патрубку и поступает на осевые лопатки первой ступени, после которых установлен направляющий аппарат, затем газ поступает на следующую осевую ступень, где степень сжатия газа увеличивается. После прохождения всех осевых лопаток газ поступает в центральную часть центробежного колеса. В результате взаимодействия с лопатками центробежного рабочего колеса, газ под действием центробежной силы поступает в отводящее устройство и направляется в напорную магистраль.

Видео:Рабочий процесс в осевой ступени турбиныСкачать

Рабочий процесс в осевой ступени турбины

Применение осевых компрессоров

Осевые компрессоры используют в доменном производстве на металлургических предприятиях, в газотурбинных установках, авиационных реактивных двигателях, для обеспечения наддува двигателей внутреннего сгорания.

Видео:Как работаетй осевой компрессор или вентиляторСкачать

Как работаетй осевой компрессор или вентилятор

Осевой компрессор

Компрессор. Схема мно­гоступенчатого осевого комп­рессора изображена на рис. 2.1. Его основными составны­ми частями являются: ротор 2 с закрепленными на нем рабочими лопатками 5, корпус 7 (ци­линдр), к которому крепятся направляющие лопатки 6 и концевые уплотнения 2, и подшипники 3. Совокупность одного ряда вращаю­щихся рабочих лопаток и одного ряда расположенных за ними непод­вижных направляющих лопаток называется ступенью компрессора. Засасываемый компрессором воздух последовательно проходит через следующие элементы компрессора, показанные на рис. 2.5: входной патрубок 1, входной направляющий аппарат 4, группу сту­пеней 5, 6, спрямляющий аппарат 8, диффузор 9 и выходной патру­бок 10.

Схема ступени осевого компрессора

Рис. 2.1 Схема многоступенчатого осевого компрессора:

1-входной патрубок; 2-концевые уплотнения; 3-подшипники; 4-входной направляющий аппарат; 5-рабочие лопатки; 6-направляющие лопатки; 7-корпус 8-спрямляющий аппарат; 9-диффузор; 10-выходной патрубок; 11-ротор

Рассмотрим назначение этих элементов. Входной патрубок предназначен для равномерного подвода воз­духа из атмосферы к входному направляющему аппарату, который должен придать необходимое направление потоку перед входом в первую степень. В ступенях воздух сжимается за счет передачи механической энергии потоку воздуха от вращающихся лопа­ток. Из последней ступени воздух поступает в спрямляющий аппарат, предназначенный для придания потоку осевого направления перед входом в диффузор. В диффузоре продол­жается сжатие газа за счет понижения его кинетической энергии. Выходной патрубок предназначен для подачи воздуха от диффузора к перепуск­ному трубопроводу.

Лопатки компрессора 1 (рис. 2.2) образуют ряд рас­ширяющихся каналов (диффузо­ров). При вращении ротора воздух входит в межлопаточные каналы с большой относительной скоростью (скорость движения воздуха, наблюдаемая с движущихся лопаток). При движении воздуха по этим ка­налам его давление повышает­ся в результате уменьшения относительной скорости. В расширяющихся каналах, обра­зованных не-подвижными направляющими лопатками 2, про­исходит дальнейшее повышение давления воздуха, сопровождающееся соответствующим уменьшением его кинетической энергии. Таким образом, преобразование энергии в ступени компрессора происходит по сравнению с турбиной ступенью в обратном направлении.

Читайте также: Схема управления электроприводом компрессора низкого давления

Схема ступени осевого компрессора

Рис. 2.2 Схема ступени осевого компрессора

Выбор числа каскадов компрессора

Разработка одновального осевого компрессора на степени повыше­ния давления (πк) более семи связана с преодолением двух основных про­блем:

— чрезмерно высокой быстроходности первых и низкой – последних ступеней из-за многократно уменьшающегося удельного объема вдоль проточной части при единой частоте вращения ротора; возникают неоптимальные условия для обеспечения высоких адиабатических КПД первых и последних ступеней;

— сильного рассогласования первых ступеней при запуске и частичных нагрузках, срывного обтекания с высокими динамическими напряжениями в лопаточном аппарате.

В авиадвигателестроении задача повышения πк была решена путем разработки многокаскадных компрессоров, когда механически соединены роторы компрессоров и турбин соответствующих давлений: ТНД вращает КНД, а ТВД — КВД. Эти группы турбомашин и называют каскадами. Для сохранения прямоточности и компактности двигателя вал, соединяющий КНД с ТНД, расположен концентрично внутри ротора КВД — ТВД. Ком­прессор на большую общую πк и турбина с высокой πт образованы турбо-машинами с малыми или умеренными (2,5 — 4,5) степенями повышения (понижения) давления, при этом каждый каскад имеет оптимальные быст­роходности. Газодинамическая и прочностная проблемы здесь заменены сложным конструктивно-технологическим исполнением. Для транспортно­го двигателя с плотной компоновкой узлов при большой серийности про­изводства дополнительное усложнение оправдано, тем более что другие способы повышения КПД (путем усложнения цикла) повлекли бы за собой рост удельной массы ГТД и его габаритов. При оптимальном конструиро­вании такое исполнение обеспечивает и меньшую удельную массу ГТД.

В стационарном газотурбостроении ГТУ с многокаскадным ком­прессором нашли ограниченное применение. Для машин большего ресур­са их главным недостатком является усложнение ремонта на месте экс­плуатации при большой стоимости транспортировки тяжелых узлов на за­вод или в ремонтный центр.

Достижение высоких πк в простом цикле стационарных ГТУ задер­жалось.

Сначала была решена задача управления однокаскадным компрессо­ром при частичных режимах и на запуске — введением одного (РВНА), а затем и нескольких рядов регулируемых направляющих аппаратов (ПНА). Затем удалось оптимизировать проточную часть осевых компрессоров со­вмещением последних низконапорных ступеней с первыми, выполняя их трансзвуковыми. В начале 70-х годов в России и США были разработаны компрессоры с трансзвуковыми ступенями для энергетических ГТУ с по­стоянной частотой вращения (ЛМЗ, г. Ленинград, Дженерал Электрик). К концу 70-х годов созданы отечественные приводные ГТУ с трансзвуковы­ми компрессорами ( ГТН-16 ТМЗ). С середины 80-х годов этот подход на­шел применение в приводных ГТУ зарубежных фирм (ГТУ Тип 10, АББ-Зульцер; «Марс» Солар — США; ПЖТ -10, Нуово Пиньоне, Италия).

Консерватизм стационарного газотурбостроения в части применения трансзвуковых компрессоров имел основания. В 60-х годах были разрабо­таны (за рубежом и в России) изолированные дозвуковые ступени и мало­ступенчатые компрессоры, у которых адиабатический КПД при испытани­ях достиг величины 95 — 94%. Трансзвуковые ступени обеспечивали тогда 83 — 85% при крутой газодинамической характеристике. Отрыв погранич­ного слоя в области скачков уплотнений был главным препятствием в дос­тижении высокого КПД. Однако экспериментальные исследования последних 15 лет позволили повысить КПД трансзвуковых ступеней до 88 и даже 91%. Однокаскадный осевой компрессор стал конкурентоспособ­ным с многокаскадным, а при умеренных (12 — 14) общих πк обеспечил бо­лее высокий интегральный КПД в связи с отсутствием промежуточных патрубков. Конструктивно-технологический облик ГТУ с однокаскадным компрессором обеспечивает существенно большую простоту изготовле­ния, эксплуатации и, особенно, ремонта. При однокаскадном исполнении упрощается конструкция турбины, приводящей компрессор. Последнее относится к подшипникам, уплотнениям, системе охлаждения ротора. В однокаскадных компрессорах с большой степенью повышения давления (πк) из-за общей высокой быстроходности ротор нередко получается «гибким», т.е. его рабочая частота вращения находится выше или между критическими частотами системы (ротор — масляный слой подшипников -статор). Современные методы расчета, дополненные экспериментами на прототипах, позволяют качественно решать задачу на этапе конструирова­ния машины без проблем для ее будущей эксплуатации.

В многовальном газогенераторе отдельные роторы турбомашин мо­гут быть «жесткими». Но валопровод, образуемый при соединении роторов компрессоров и турбин соответствующих каскадов длинными промежу­точными валами, может иметь несколько собственных частот в рабочем диапазоне режимов. Обеспечение малого уровня вибрации и стабильности во времени такой системы является достаточно сложной расчетно-экспериментальной задачей.

Читайте также: Турбонагнетатель компрессор система не работает сбой в работе

На каждом этапе научно-технического развития многовальный га­зогенератор позволяет создать ГТУ (ГТД) с существенно большей сте­пенью повышения давления в цикле (πк), и только при такой поста­новке задачи имеет смысл его разработка. К концу 90-х годов при πк в однокаскадных компрессорах 12-18 многокаскадные обеспечивают ее зна­чения 25-36 и более. Разработка стационарных ГТУ с многовальным газо­генератором не исключена, но требует изысканий оригинальных техниче­ских решений. Прямое копирование конструкций транспортных ГТД для машин с на порядок большей массой узлов, малой серийностью приводит к отрицательному результату — к суммированию недостатков ГТУ двух разных назначений. Большинство газотурбостроительных фирм продолжа­ет создание стационарных ГТУ как приводных, так тем более энергетиче­ских исключительно с одновальными газогенераторами. (Фирма АББ, Швейцария, разработала энергетическую ГТ-26 мощностью 240 МВт с πк=30 в однокаскадном компрессоре.)

На каком-то этапе выполнение нескольких рядов направляющих ло­паток поворотными представлялось специалистам значительным усложне­нием компрессора. Однако разработка рациональной конструкции, осна­щение производства перевели эту проблему в ряд обычных инженерных задач.

Видео:Расчет ступени осевого компрессора в Ansys Импорт геометрии ч1Скачать

Расчет ступени осевого компрессора в Ansys Импорт геометрии ч1

3.2. Схема и принцип действия ступени осевого компрессора

Осевой компрессор имеет несколько рядов лопаток, закреплннных на вращающихся дисках или барабане и образующих ротор компрессора (рис. 3.1).

Один ряд лопаток ротора (вращающийся лопаточный венец) называется рабочим колесом (РК).

Другой основной частью компрессора является статор, состоящий из нескольких рядов неподвижных лопаток (лопаточных венцов), закрепленных в корпусе.

Схема ступени осевого компрессора

Рис. 3.1. Ротор и статор осевого компрессора

Схема ступени осевого компрессора

Назначением лопаток статора является спрямление воздушного потока, закрученного впереди стоящим рабочим колесом, и направление его под необходимым углом на лопатки расположенного далее следующего рабочего колеса. Соответственно этому один ряд лопаток статора называется направляющим аппаратом (НА).

Если первый ряд лопаток статора установлен впереди первого рабочего колеса, то он называется входным направляющим аппаратом (ВНА).

Пространство, заключенное между поверхностями втулки и корпуса, называется проточной частью ступени.

Сочетание одного рабочего колеса (РК) и одного стоящего за ним направляющего аппарата (НА) называется ступенью компрессора (осевой ступенью, рис. 3.2).

Будем рассматривать в дальнейшем следующие сечения проточной части ступени: 1-1 перед рабочим колесом,2-2 за рабочим колесом и3-3 за направляющим аппаратом. Параметры воздушного потока в этих сечениях будем отмечать индексами, соответствующими номеру сечения.

В каждом из этих сечений различают диаметр втулки Dвт(по основаниям лопаток) инаружный диаметр Dк (по корпусу).На рис. 3.2 эти диаметры показаны для сечения1-1.

Предположим для простоты, что все струйки воздуха, проходящие через ступень, движутся по цилиндрическим поверхностям, что обычно близко к действительности. Тогда для анализа картины течения воздуха в ступени проведем мысленно её сечение такой цилиндрической поверхностью АА, ось которой совпадает с осью РК, и развернем затем это сечение на плоскость. Тогда сечения лопаток РК и НА представятся в виде двух рядов одинаковых и одинаково расположенных профилей, образующихрешетки профилейрабочего колеса и направляющего аппарата, как показано на рис. 3.3 (где для удобства дальнейшего изложения сечения лопаток повернуты по отношению к рис. 3.2 на 90°).

Рассмотрим течение воздуха через эти решетки профилей. На входе в рабочее колесо скорость воздуха по отношению к корпусу компрессора (будем называть ее абсолютной скоростью) в общем случае может быть направлена не параллельно оси колеса, а под некоторым углом к ней вследствие неполного спрямления потока направляющим аппаратом предыдущей ступени или установки перед колесом входным направляющим аппаратом, показанного на рис. 3.3 пунктиром. Эта скорость изображена на рис. 3.3 векторомСхема ступени осевого компрессора.Вращению рабочего колеса соответствует на рис. 3.3 перемещение решетки РК справа налево сокружной скоростью Схема ступени осевого компрессора.

Схема ступени осевого компрессора

Рис. 3.3. Схема течения воздуха в ступени осевого компрессора

Схема ступени осевого компрессора

Для определения скорости воздуха относительно рабочих лопаток (относительной скорости) применим известное правило сложения векторов скоростей, согласно которому абсолютная скорость равна сумме относительной и переносной. В данном случае переносной скоростью является окружная скорость лопаток, следовательно,

Читайте также: Принцип работы разгрузочного клапана в компрессоре

Схема ступени осевого компрессора

.

Треугольник, составленный из векторов Схема ступени осевого компрессора,Схема ступени осевого компрессораиСхема ступени осевого компрессора, называетсятре­угольником скоростейна входе в колесо.

Лопатки рабочего колеса захватывают поступающий к ним воздушный поток и проталкивают его дальше вдоль проточной части (вправо на рис. 3.2 и, соответственно, вниз на рис. 3.3), сообщая ему при этом энергию. Во избежание срыва потока с их поверхности лопатки РК должны быть установлены так, чтобы их передние кромки были направлены под малым углом к направлению вектора Схема ступени осевого компрессора. Кроме того, для усиления передачи воздуху энергии форма (кривизна) профилей лопаток должна быть выбрана с таким расчетом, чтобы уголвыхода потока из колеса2был больше угла входа1. Как видно из рис. 3.3, такая форма профилей лопаток образует между двумя соседними профилями расширяющийся каналСхема ступени осевого компрессора. Поэтому течение в таком канале сопровождается увеличением площади поперечного сечения каждой струи воздуха. Соответственно относительная скорость воздуха в рабочем колесе уменьшается (W2 p1).

Такое обтекание лопаток рабочего колеса сопровождается воз­никновением на каждой лопатке аэродинамической силы Схема ступени осевого компрессора, направленной от вогнутой поверхности профиля к выпуклой (см. рис. 3.3). Работа, затрачиваемая на преодоление этой силы при вращении колеса и передаваемая воздуху, идет как на увеличение абсолютной скорости (т.е. кинетической энергии) воздуха, прошедшего через колесо, так и на повышение его давления, как показано в верхней части рис. 3.2. Соответственно полный напор воздушного потока также возрастаетСхема ступени осевого компрессора.

Вектор абсолютной скорости потока воздуха за решеткой рабочего колеса Схема ступени осевого компрессораможет быть определен путем сложения уже известных векторов скоростейСхема ступени осевого компрессораиСхема ступени осевого компрессора, т.е. построениемтреугольника скоростей на выходе из колеса (см. рис. 3.3).Вследствие поворота потока в колесе вектор скоростиСхема ступени осевого компрессораоказывается отклоненным от вектораСхема ступени осевого компрессорав сторону вращения колеса. Лопатки направляющего аппарата отклоняют поток воздуха в обратную сторону, причем форма их подбирается обычно так, чтобы направление вектора скорости воздуха за ступеньюСхема ступени осевого компрессорабыло близко к направлению вектораСхема ступени осевого компрессора. При этом, как и в рабочем колесе, поворот межлопаточного канала приводит к увеличению поперечного сечения струи воздуха, проходящей через канал между соседними лопаткамиСхема ступени осевого компрессора. В результате скорость воздуха в направляющем аппарате падает, а давление растет. Но здесь рост давления обеспечивается только за счет использования кинетической энергии воздуха. Полный напор воздушного потока в направляющем аппарате уже не растет, а несколько уменьшается из-за влияния гидравлических потерь.

Таким образом, течение воздуха через ступень может рассматриваться как течение через систему диффузорных каналов с уменьшением относительной скорости воздуха в рабочем колесе, уменьшением абсолютной скорости в направляющем аппарате и увеличением давления в обоих случаях.

Показанные на рис. 3.3 треугольники скоростей в сечениях 1-1н2-2обычно совмещают на одном чертеже, называемомтреугольником скоростей ступени.В общем случае он имеет вид, показанный на рис. 3.4. Здесь же указаны те обозначения, которые будут использованы в дальнейшем.

При построении треугольника скоростей ступени надо учитывать, что величина составляющей скорости воздуха в направлении оси компрессора (осевая составляющая) при прохождении воздуха через колесо в общем случае может изменяться. Вследствие увеличения давления в колесе плотность воздуха на выходе из него оказывается больше, чем на входе, и поэтому при постоянной высоте лопаток осевая составляющая скорости воздуха соответственно уменьшается. Но обычно ступень выполняют таким образом, что высота лопаток к выходу из нее уменьшается. В этом случае осевая составляющая скорости воздуха может как уменьшаться, так и увеличиваться, в зависимости от соотношения изменения плотности воздуха и площади поперечного сечения воздушного тракта ступени. В расчетных условиях работы ступени обычно имеет место некоторое уменьшение осевой составляющей скорости воздуха в колесе и в ступени в целом.

Схема ступени осевого компрессора

Рис. 3.4. Треугольники скоростей ступени осевого компрессора

На рис. 3.4c1uокружная составляющая абсолютной скорости воздуха перед колесом (предварительная закрутка). Очевидно,Схема ступени осевого компрессора. Если1 90° соответствуетотрицательнойзакрутке. Если1 = 90°, то векторСхема ступени осевого компрессоранаправлен параллельно оси вращения колеса, предварительная закрутка отсутствует и ступень в этом случае называетсяступенью с осевым входом.ВеличинаСхема ступени осевого компрессора, т.е. разность окружных составляющих относительных скоростей воздуха перед и за колесом, называетсязакруткой воздуха в рабочем колесе в относительном движении, аСхема ступени осевого компрессоразакруткой воздуха в РК в абсолютном движении.ЕслиСхема ступени осевого компрессора, тоСхема ступени осевого компрессора.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    🎦 Видео

    Рабочий процесс в осевой ступени турбиныСкачать

    Рабочий процесс в осевой ступени турбины

    Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессораСкачать

    Курс ""Турбомашины". Раздел 3.1.1. Принцип действия ступени компрессора

    Как работает центробежный газовый компрессорСкачать

    Как работает центробежный газовый компрессор

    Все о компрессорахСкачать

    Все о компрессорах

    Работа винтового компрессора, его принцип действия и устройство.Скачать

    Работа винтового компрессора, его принцип действия и устройство.

    Пятиступенчатые центробежные компрессоры Dresser RandСкачать

    Пятиступенчатые центробежные компрессоры Dresser Rand

    Турбинная ступень. Треугольники скоростейСкачать

    Турбинная ступень. Треугольники скоростей

    Действующая модель осевого компрессора | РЭП Холдинг | Газовый форумСкачать

    Действующая модель осевого компрессора | РЭП Холдинг | Газовый форум

    Схема электропривода компрессора.Скачать

    Схема электропривода компрессора.

    Поршневой компрессорСкачать

    Поршневой компрессор

    9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.Скачать

    9. ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕРМОДИНАМИКА КОМПРЕССОРОВ. Работа компрессора. Вредный объём.

    Курс ""Турбомашины" Глава 3.2 Рабочий процесс центробежного компрессора. ч. 1 (лектор Батурин О.В.)Скачать

    Курс ""Турбомашины" Глава 3.2  Рабочий процесс центробежного компрессора. ч. 1 (лектор Батурин О.В.)

    Устройство и принцип работы винтового компрессораСкачать

    Устройство и принцип работы винтового компрессора

    Как работает торцевое уплотнение? / Центробежный насосСкачать

    Как работает торцевое уплотнение? / Центробежный насос
Поделиться или сохранить к себе:
Технарь знаток