Схема вала привода насоса

Рабочее колесо. Основным узлом центробежного насоса является рабочее колесо. В зависимости от числа рабочих колес насосы подразделяют на одноступенчатые с одним рабочим колесом и многоступенчатые с несколькими рабочими колесами, установленными на одном валу (Рисунок 17).

Схема вала привода насоса

Рисунок 17 – Схема многоступенчатого центробежного насоса:

1 — направляющий аппарат; 2 — четвертая ступень

При этом жидкость проходит через все рабочие колеса. Суммарный напор многоступенчатого насоса равен сумме напоров, развиваемых каждой ступенью.

Схема вала привода насоса

Рисунок 18 – Центробежный насос с двухсторонним подводом воды
и направляющим аппаратом.

1-корпус; 2 — рабочее колесо; 3 — втулка; 4 — всасывающий патрубок;
5 — нагнетательный патрубок; 6 — направляющий аппарат.

По способу подвода жидкости к рабочему колесу насосы бывают с односторонним и двусторонним подводом воды (Рисунок 18). Рабочее колесо (Рисунок 19) состоит из переднего диска 1 с отверстием для входа жидкости и сплошного-заднего 2, который посредством ступицы обеспечивает крепление колеса на валу. В промежутках между дисками установлены лопатки. Для того чтобы не снижать площадь проходного сечения рабочего колеса на входе жидкости, длина лопатки различна.

Схема вала привода насоса

Рисунок 19 – Рабочее колесо центробежного насоса.

Все лопатки располагают наружными кромками к внешнему диаметру колеса. Лопатки, располагаемые через одну, не доходят до внутренней окружности колеса.

Рабочие колеса выполняют из чугуна, стали. Для работы в агрессивных средах применяют лопатки из бронзы, латуни и коррозионно-стойких сталей.

Направляющий аппарат. Преобразование кинетической энергии, сообщаемой жидкости рабочим колесом, в потенциальную происходит в направляющем аппарате каждой ступени, который представляет собой устройство, состоящее из неподвижных дисков с плашками (Рисунок 20).

Схема вала привода насоса

Рисунок 20 – Направляющий аппарат центробежного насоса секционного типа.

1 – направляющий аппарат; 2 – рабочее колесо.

В одноступенчатых насосах или из последнего рабочего колеса многоступенчатого насоса жидкость с большой скоростью поступает в спиральную камеру 1 (Рисунок 21). Затем через трубный расширитель 2 (диффузор) жидкость направляется в напорный трубопровод. Форма спиральной камеры должна обеспечить плавное снижение скорости по направлению к выходу и минимальные потери на гидравлические сопротивления.

Схема вала привода насоса

Рисунок 21 – Спиральная камера центробежного насоса.

Вал насоса. Вал насоса предназначен для передачи вращающего момента от привода насоса к рабочим колесам.

Вал с неподвижно посаженными на нем рабочими колесами образуют ротор насоса. Для соединения вала с рабочим колесом предусмотрено соединение шпоночного типа. Вал является наиболее нагруженной и ответственной деталью насоса.

Валы изготовляют из высокопрочных сталей. Они имеют ступенчатую форму (Рисунок 22).

К средней части 3 вала со шпонкой 6 крепится рабочее колесо. На концах вала имеются шейки 1 под подшипники. В зонах 2 расположены защитные втулки 7 и 8, а на участке 4 — соединительная полумуфта, на конец шейки вала надета зажимная гайка 9 упорного подшипника. Метка 5 служит для правильной сборки ротора.

Схема вала привода насоса

Соединительные муфты. Для передачи вращательного момента от двигателя ротору в центробежных насосах применяют в основном соединительные втулочно-пальцевые, зубчатые и упругие муфты.

Втулочно-пальцевые муфты (Рисунок 23) имеют широкое распространение, что обусловлено простотой их изготовления и низкой стоимостью.

Они дополнительно выполняют функции амортизаторов (в муфтах имеются упругие элементы). Так как упругие элементы таких муфт обладают низкими прочностными свойствами, то область их применения ограничивается насосами средней и низкой мощности.

Схема вала привода насоса

Рисунок 23 – Пальцевая муфта.

1-уплотнение (фетровый сальник); 2 — втулка привода: 3 — прокладка; 4 — втулка насоса; 5-полумуфта привода; 6-полумуфта насоса

У зубчатых муфт (Рисунок 24) все детали выполнены из металла. Незначительные перекосы и осевые смещения валов обусловлены перемещениями в зубчатом зацеплении.

Зубчатая муфта состоит из двух обойм с внутренними зубьями, в зацеплении с которыми находятся зубья втулок, установленных на концах соединяемых валов. Зубчатые муфты надежны в работе и не имеют быстроизнашивающихся деталей. Они способны передавать высокие нагрузки и работать при высоких частотах вращения независимо от направления вращения. Следует отметить, что полость муфты необходимо заполнять маслом.

Схема вала привода насоса

Рисунок 24 – Зубчатая муфта.

Читайте также: Шланг полиуретановый для компрессора калибр шакк 11

1-уплотнение (фетровый сальник); 2 — втулка привода: 3 — прокладка; 4 — втулка насоса; 5-полумуфта привода; 6-полумуфта насоса

Упругие муфты (Рисунок 25) имеют высокую технологичность, просты и надежны в работе. Упругий элемент состоит из пакета фигурных стальных пластин. Пластины устанавливают на болтах между центральной втулкой и полумуфтами (часть болтов вворачивается во втулку, а часть в полумуфту). Упругие муфты описанной конструкции работают без смазки.

Схема вала привода насоса

Рисунок 25 – Упругая муфта.

1 – пакеты упругих пластин; 2 – втулка; 3 – болты; 4 – полумуфты.

Уплотнения валов. Неисправность уплотнительных узлов является распространенной причиной остановок насосов. Эксплуатация насосов с неисправными уплотнениями при перекачке радиоактивных, пожаро- и взрывоопасных жидкостей может привести к серьезным авариям. Поэтому устройству и обслуживанию уплотнений валов необходимо уделять серьезное внимание.

Наиболее простым по конструкции и в обслуживании является сальниковое уплотнение (Рисунок 26). Материал, из которого выполнено уплотнение, и усилия поджатия зависят от рабочих давлений, скорости скольжения поверхности вала, температуры и свойств перекачиваемой жидкости.

Схема вала привода насоса

Рисунок 26 – Сальниковое уплотнение.

1 – корпус сальника; 2 – кольца набивки; 3 – нажимная втулка.

При небольшом перепаде давления и низких скоростях скольжения применяют манжетные уплотнения. В современных насосах в основном используют стандартные манжеты, которые изготавливают из резины.

Манжеты имеют металлический каркас, придающий манжете необходимую жесткость, и пружину, создающую предварительный обжим вала уплотняющим элементом.

Наиболее эффективным видом уплотнения являются торцовые уплотнения, которые работают при более значительных перепадах давлений и скоростях скольжения, чем манжетные и сальниковые уплотнения. Кроме того, по сравнению с указанными уплотнениями торцовые уплотнения допускают более значительное радиальное биение вала и имеют больший срок службы.

Торцовые уплотнения значительно сложнее по конструкции, чем сальниковые или манжетные. Однако в условиях длительной эксплуатации они более экономичны, так как практически не требуют затрат на обслуживание.

Конструкции торцовых уплотнений разнообразны. Выбор их определяется условиями эксплуатации. На Рисунок 27 показана конструкция торцового уплотнения с двумя торцовыми парами, в пространство между которыми подается жидкость с давлением, превышающим давление уплотнения.

Схема вала привода насоса

Рисунок 27 – Конструкция двойного торцевого уплотнения.

1 – вращающиеся обоймы; 2 – обоймы неподвижные; 3 – пары трения.

Такая конструкция практически полностью исключает утечку перекачиваемой жидкости. Уплотнение имеет вращающиеся и неподвижные контактные кольца. Нажимное устройство, состоящее из пружины, обоймы и нажимного кольца, вращается вместе с валом.

На Рисунок 28 приведена схема торцевого уплотнения с одной парой трения. Уплотнение осуществляется с помощью подвижного в осевом направлении кольца.
В этом уплотнении использовано коническое кольцо из фторопласта. Уплотнения, выполненные по приведенной схеме, применяют при работе с агрессивными средами, которые не содержат абразивных примесей.

Схема вала привода насоса

Рисунок 28 – Схема торцового уплотнения с одной парой трения.

К наиболее простым и надежным уплотнениям относятся также щелевые уплотнения, которые применяют для уплотнения рабочих колес со стороны всасывания, а также в качестве межступенчатых уплотнений.

В общем случае щелевые уплотнения представляют собой цилиндрическую щель, образованную неподвижной деталью корпуса и вращающейся втулкой, установленной на роторе. Герметизирующая способность щелевого уплотнения зависит от длины щели и зазора между вращающимися деталями, который устанавливается минимально возможным, чтобы исключить возможность трения Применение щелевых уплотнений снижает экономичность насоса вследствие утечек.

Особой разновидностью уплотнений являются импеллеры. Они относятся к так называемым динамическим уплотнениям, т. е. их уплотняющая способность проявляется только при вращении вала. По конструкции импеллеры напоминают рабочее колесо центробежного насоса и аналогичны ему по принципу действия.

Видео:9.1 Расчет валов приводаСкачать

9.1 Расчет валов привода

Вал насоса

Схема вала привода насоса

Вал насоса является базовой деталью ротора, на которую при работе насоса действует нагрузка. Максимальный диаметр его обычно выбирают в месте посадки рабочих колес, дальше к обеим концам ступенчато уменьшают для установки втулок и других деталей ротора.

Основные детали центробежного насоса это: рабочее колесо, вал, корпус, уплотнения и подшипники. Эти соединяются вустройстве насоса.

Содержание статьи

Читайте также: Калина датчик положения распределительного вала высокий уровень сигнала датчика

Уступ для упора рабочих колес должен быть выполнен строго перпендикулярно оси насоса. Оси шпоночных пазов должны лежать в плоскости проходящей через ось вала. В качестве заготовок для вала насоса применяют прокат или поковку. Заготовки валов крупных насосов должны проходить дефектоскопию для выявления скрытых дефектов.

Видео:6.2 Кинематический расчет приводаСкачать

6.2 Кинематический расчет привода

Материалы для вала насоса

Для изготовления валов насосов, перекачивающих холодную воду, можно использовать сталь 40, 45 или 40Х.

Для валов горячеводных насосов материал должен сохранять свои механические свойства при температуре перекачиваемой жидкости и иметь коэффициент линейного расширения, мало отличный от коэффициента линейного расширения материала других деталей ротора.

Валы насосов, перекачивающих агрессивные жидкости, можно изготавливать из обычных материалов. Однако в этом случае необходимо предусмотреть надежную защиту вала втулками из коррозионностойкого материала.

Жесткость вала насоса

Вал водяного насоса должен иметь достаточную прочность и жесткость, при которых гарантируется отсутствие недопустимых деформаций, нарушающих устойчивую работу ротора. Под действием собственного веса и веса насаженных деталей вал имеет определенный статический прогиб. При вращении вала даже при тщательной балансировке, всегда имеет место остаточный небаланс, вызывающий дополнительную нагрузку на вал от действия центробежной силы. Кроме того, при работе на ротор действуют гидромеханические силы в радиальном и осевом направлениях. Под действием этих сил ось вала получает дополнительный динамический прогиб, который зависит от частоты вращения вала насоса.

При некоторой частоте вращения динамический прогиб может достигнуть такого значения, что вал водяного насоса станет динамически неустойчивым и начнет вибрировать. В этом случае обычно частота возмущающей силы совпадает с частотой собственных колебаний ротора, и наступает явление резонанса. Частота вращения вала насоса, соответствующая возникновению резонанса, называется критической частотой вращения (nкр).

Ротор работающий с частотой вращения ниже критической, называю «жёсткими», а роторы работающие при сверхкритических частотах — «гибкими».

В насосах ставят роторы обоих типов. Рабочую частоту вращения n рекомендуют выбирать равной

Видео:Шестеренный насос - устройство, принцип работы, применениеСкачать

Шестеренный насос - устройство, принцип работы, применение

Устройство и принцип работы насоса системы охлаждения двигателя (помпы)

Для обеспечения циркуляции жидкости в системе охлаждения двигателя автомобиля применяется центробежный насос, или помпа. Он может иметь механический или электрический тип привода. Если помпа неисправна, вся система охлаждения будет находиться в нерабочем состоянии, что приведет к перегреву двигателя.

Видео:Как правильно подобрать вращение насоса НШ при установке на двигательСкачать

Как правильно подобрать вращение насоса НШ при установке на двигатель

Устройство насоса системы охлаждения

Конструктивно помпа представляет собой классический центробежный насос для перекачки воды и неагрессивных жидкостей. Она состоит из следующих деталей:

  • Герметичный корпус. Он имеет сложную форму и чаще всего изготавливается из алюминиевых сплавов. Для подключения в систему в корпусе выполнены два патрубка – всасывающий и напорный. Первый подключается к магистрали, идущей от радиатора, а второй к магистрали рубашки охлаждения двигателя.
  • Вал – осуществляет передачу вращения от привода к крыльчатке помпы.
  • Крыльчатка, или рабочее колесо. Имеет лопасти специальной формы, с помощью которых осуществляет нагнетание охлаждающей жидкости в систему.
  • Приводной шкив.
  • Уплотнители (сальники) – предотвращает утечку охлаждающей жидкости в местах крепления насоса к магистралям.
  • Подшипники.

Располагается помпа в системе охлаждения двигателя между радиатором и рубашкой. Чаще всего – это передняя часть мотора.

Изначально в качестве охлаждающей жидкости применялась просто очищенная вода, а потому такой насос нередко называют помпа водяного охлаждения двигателя. Сейчас этот термин неактуален, поскольку для охлаждения применяют не чистую воду, а водные растворы с ингибиторами коррозии (в теплом климате) и антифризы (в зимнее время), в состав которых также входит этиленгликоль.

Видео:Как правильно эксплуатировать насос НШ /ТОП-5 ошибок/Скачать

Как правильно эксплуатировать насос НШ /ТОП-5 ошибок/

Принцип работы помпы охлаждения двигателя

Главной задачей насоса системы охлаждения является создание избыточного давления для обеспечения принудительной циркуляции жидкости в контурах. С практической стороны это ускоряет процесс теплообмена между узлами двигателя и охлаждающей жидкостью.

При запуске двигателя автомобиля привод насоса через ременную передачу и вал передает вращательное движение рабочему колесу. В этот момент на входе (всасывающем патрубке) создается разрежение, способствующее всасыванию жидкости в помпу. Жидкость при этом находится в охлажденном состоянии, так как поступает из радиатора системы охлаждения.

Читайте также: Шкив 5010550065 коленчатого вала со ступицей

Попадая в центральную часть помпы, жидкость движется по лопастям крыльчатки и под действием центробежной силы нагнетается через выходной патрубок в рубашку системы охлаждения двигателя (к головке блока цилиндров). Под действием высокого давления охлаждающая жидкость проходит по контуру через основные узлы и выполняет отвод тепла. После этого она вновь возвращается к радиатору, где остужается и всасывается насосом для нового цикла охлаждения.

Видео:Как работает центробежный насос? Основные типы конструкций центробежных насосовСкачать

Как работает центробежный насос? Основные типы конструкций центробежных насосов

Виды насосов охлаждающей системы

Используемые в современном автомобилестроении насосы охлаждающей жидкости не имеют принципиальных конструктивных отличий. Но они могут разделяться в зависимости от типа привода, назначения и конструкции корпуса. Привод насоса может осуществляться двумя способами:

  • Механический – вал помпы соединен при помощи ременной передачи с коленвалом или распредвалом мотора. В этом случае она приводится в движение синхронно с запуском двигателя.
  • Электрический – в такой схеме вал насоса приводится в движение дополнительным электродвигателем, работа которого контролируется электронным блоком управления двигателя (ЭБУ).

По назначению помпа автомобильного двигателя может быть:

  • Основной. Такой насос выполняет непосредственную перекачку жидкости в системе охлаждения.
  • Дополнительной. Устанавливается не на всех автомобилях и может предназначаться для вспомогательного охлаждения в регионах с очень жарким климатом, снижения температуры отработавших газов, охлаждения турбонагнетателя в моторах с турбонаддувом, дополнительного охлаждения двигателя после остановки. В отличие от основного насоса, дополнительный приводится в работу индивидуальным электродвигателем.

Сроки эксплуатации насоса для перекачки охлаждающей жидкости зависят от типа конструкции его корпуса. По этому параметру различают:

  • Разборные. Этот тип применяется в старых и отечественных автомобилях. Такая конструкция позволяет выполнить ремонт и промывку помпы.
  • Неразборные. В большинстве стран помпа двигателя считается недорогой расходной запчастью, а потому многие производители перешли к изготовлению неразборных насосов. Их необходимо полностью заменять каждые 60 тысяч километров пробега автомобиля. При установке нового насоса обязательно выполняется замена приводного ремня.

Помимо описанных выше конструкций, также существуют отключаемые насосы. Они позволяют отключать поступление охлаждающей жидкости, пока она не прогреется до температуры 30°С. Это позволяет обеспечить более быстрый прогрев двигателя и улучшить показатели расхода топлива.

Видео:сборка пром вала на ДВС змз 405Скачать

сборка пром вала на ДВС змз 405

Возможные неисправности помпы системы охлаждения

Поломка насоса охлаждающей жидкости может привести к остановке всей системы. Это может серьезно отразиться на состоянии двигателя. Наиболее частыми проблемами помпы являются:

  • Износ уплотнителя (сальника). В этом случае происходит утечка охлаждающей жидкости.
  • Поломка рабочего колеса. При разрушении крыльчатки нагнетание жидкости становится хуже (падает давление) или вовсе прекращается.
  • Заклинивание подшипников. Если смазка насоса ухудшается, что также может быть следствием подтекания жидкости охлаждения, помпа начинает работать с перебоями.
  • Увеличение люфта между крыльчаткой и валом насоса. В процессе работы рабочее колесо, закрепленное на валу, может разболтаться, что приводит к нестабильной работе помпы и другим поломкам.
  • Химическая коррозия. Чаще всего эта проблема затрагивает рабочее колесо насоса и возникает, если используются жидкости низкого качества.
  • Разрушение под действием кавитации. Пузырьки воздуха, которые могут возникать при работе насоса, интенсивно разрушают его изнутри, что приводит к ломкости деталей и их поражению коррозией.
  • Загрязнение системы. Химические отложения и просто грязь, попадающая внутрь насоса, со временем образуют твердый налет на его деталях, что затрудняет вращение рабочего колеса и прохождение жидкости.
  • Разрушение подшипников. В этом случае при работе насоса появляется характерный свист. Заменить такие подшипники сложно, а потому в этом случае насос просто меняют.
  • Обрыв ремня привода. При использовании некачественного ремня или несвоевременной его замене может произойти разрыв или проскальзывание.

При остановке работы системы охлаждения двигателя всего на 5-6 минут может произойти перегрев двигателя. Действие высоких температур нарушает геометрию головки блока цилиндров и ведет к повреждениям кривошипно-шатунного механизма. Не стоит игнорировать мелкие неисправности системы охлаждения, так как в дальнейшем они могут привести к серьезному ремонту.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала


    📽️ Видео

    Как определить вращение насоса НШ /3 способа/Скачать

    Как определить вращение насоса НШ /3 способа/

    Узнав этот секрет, ты больше никогда не выбросишь моторчик от микроволновки!Скачать

    Узнав этот секрет, ты больше никогда не выбросишь моторчик от микроволновки!

    Котика ударило током, 10 т. ВольтСкачать

    Котика ударило током, 10 т. Вольт

    Привод насоса НШ-10 без токарных работ.Скачать

    Привод насоса НШ-10 без токарных работ.

    как ЛЕГКО сделать ВОМ или ГИДРОМОТОР из НШ.Скачать

    как ЛЕГКО сделать ВОМ или ГИДРОМОТОР из  НШ.

    Как работает торцевое уплотнение? / Центробежный насосСкачать

    Как работает торцевое уплотнение? / Центробежный насос

    Автослесарь показал хитрый способ, восстановления зубьев, на косозубой шестерёнке, используя свечуСкачать

    Автослесарь показал хитрый способ, восстановления зубьев, на косозубой шестерёнке, используя свечу

    Как соединить мотор с НШ. Соединительная муфта для НШ.Скачать

    Как соединить мотор с НШ. Соединительная муфта для НШ.

    Гидромоторы МГП и MP. Героторные гидромоторы.Скачать

    Гидромоторы МГП и MP. Героторные гидромоторы.

    Соединение гидравлического насоса с электромотором. Гидростанция своими руками. Hydraulic pump DIYСкачать

    Соединение гидравлического насоса с электромотором. Гидростанция своими руками. Hydraulic pump DIY

    Ременная передача. Урок №3Скачать

    Ременная передача. Урок №3

    Для А. Денисова. Метки ГРМ с применением демпфера вала тнвд. Виктор Илюшкин.Скачать

    Для А. Денисова. Метки ГРМ с применением демпфера вала тнвд. Виктор Илюшкин.

    Как устроена рулевая рейка / система ГУРСкачать

    Как устроена рулевая рейка / система ГУР
Поделиться или сохранить к себе:
Технарь знаток