Выходная мощность Рвых = 1,1 кВт; число оборотов выходного вала nвых = 35; режим работы – тяжелый; срок службы привода – 3 года (рабочих дней – 300, одна смена длится 8 часов, число смен работы – 3); передаточное число редуктора Uр = 14; первая ступень редуктора – прямозубая; разработать рабочий чертеж большего шкива клиноременной передачи.
1. Выбор электродвигателя (ЭД) и расчет основных параметров для всех ступеней передачи
1) Мощность на валу электродвигателя передается всем приводом, состоящим из клиноременной передачи и редуктора. Ее значение определяем по потребной мощности:
где Р – требуемая мощность электродвигателя, кВт
Рвых – требуемая мощность на выходном валу привода, кВт
где h12, h34, h56 – КПД первой, второй и третьей ступени привода соответственно.
В соответствии с рекомендациями с. 3 [1] принимаем:
кВт
По табл. 1.1 (с. 4, [1]) принимаем асинхронный короткозамкнутый обдуваемый двигатель 4А80В4У3 с синхронной частотой вращения 1500 об/мин, мощностью Рдв = 1,5 кВт и асинхронной частотой 1415 об/мин.
2) Передаточное число привода определяется из выражения:
где nдв – асинхронная частота вращения вала ЭД, об/мин
nвых – заданная частота вращения выходного вала привода, об/мин.
Передаточное число клиноременной передачи:
3) Общее передаточное число редуктора определяется из выражения:
где UБ – передаточное число первой (быстроходной) ступени редуктора,
UТ – передаточное число второй (тихоходной) ступени редуктора.
По рекомендациям табл. 1.4 (с. 8, [1]) принимаем:
– разбивка произведена точно.
4) Определяем расчетные параметры для ступеней привода.
Расчетная мощность на валах привода определяется по формулам:
где Рдв – мощность на валу электродвигателя, кВт;
h12, h34, h56, – КПД соответствующих ступеней привода.
Частота вращения валов привода определяется из соотношений:
nI = nдв; ; ;
Видео:Редуктор. Устройство. Конструкция. Виды и типы редукторовСкачать
где nдв – асинхронная частота вращения вала привода, об/мин;
n I – IV – частоты вращения соответствующих валов привода, об/мин.
Крутящие моменты на валах привода определяются по формуле:
, Н×м,
где Р – мощность, передаваемая валом, кВт;
n – частота вращения вала, об/мин.
Все расчеты по вышеприведенным формулам сведем в таблицу 1.1.
Номер вала | КПД ступени привода | Мощность на валу Р, кВт | Передаточное число U | Частота вращения вала, об/мин | Крутящий момент на валу, Н×м | ||
I | 0,96 | — | 1,5 | 2,89 | — | 1415 | 10,1 |
II | 0,98 | 1,44 | 4 | 490 | 28,1 | ||
III | 0,98 | 1,41 | 3,5 | 122,5 | 110 | ||
IV | — | 1,38 | — | 35 | 376,5 |
2. Расчет зубчатых передач редукторов
2.1 Расчет тихоходной ступени редуктора
Расчет зубчатых передач нашего редуктора начинаем с расчета тихоходной ступени, поскольку в соосных редукторах она нагружена больше, нежели быстроходная ступень.
Суммарное время работы привода в часах определяется по формуле:
где Lгод – срок службы привода, лет;
С – число смен работы привода;
300 – количество рабочих дней в году;
8 – число рабочих часов за одну смену.
ч.
Выбор термической обработки заготовок
По табл. 2.2 (с. 10, [1]) выбираем материал для изготовления зубчатых колес – сталь 12ХН3А. Принимаем твердость рабочих поверхностей зубьев > НВ 350. В этом случае зубья во время работы не прирабатываются и обеспечивать разность твердостей зубьев шестерни и колеса не требуется. Выбираем термообработку – улучшение + цементация + закалка. Твердость поверхности HRC 56…63, сердцевины НВ 300…400.
Определение механических свойств материалов зубчатых колес и допускаемых напряжений
1) Средние значения твердостей зубьев:
2) Предельные характеристики материалов:
sВ = 1000 МПа, sТ = 800 МПа (см. табл. 2.2, [1]).
3) Допускаемые напряжения для расчета передачи на контактную выносливость:
sОН – длительный предел контактной выносливости
МПа (см. табл. 2.6, [1]);
SН – коэффициент безопасности, SН = 1,2 (см. табл. 2.6, [1]).
МПа.
NНО – число циклов перемены напряжений, соответствующее длительному пределу выносливости; NНО = 200×10 6 (рис. 2.1, [1]);
Видео:Редуктор соосный двухступенчатый, скачать 3д модель и чертеж.Скачать
NНЕ – эквивалентное число циклов перемены напряжений для расчета на контактную выносливость:
КНЕ – коэффициент приведение; при тяжелом режиме работы КНЕ = 0,5 (табл. 2.4, [1]);
NS – суммарное число циклов перемены напряжений
где ni – частота вращения i-го зубчатого колеса.
Для шестерни: NS1 = 60×21600×122,5 = 158,8×10 6 циклов
Для колеса: NS2 = 60×21600×35 = 45,4×10 6 циклов
циклов
циклов
Так как NНЕ1 4×10 6 циклов и NFЕ2 > 4×10 6 циклов, то принимаем NFЕ1 = NFЕ2 = 4×10 6 циклов.
МПа
Раздел 18. Приводы. Редукторы и мотор-редукторы общего назначения
Приводы. Классификация.
Объектами курсового проектирования в курсе «Детали машин» обычно являются приводы машин и механизмов (например: приводы ленточных транспортеров, цепных конвейеров, индивидуальные приводы машин и механизмов), использующие большинство деталей и узлов общего назначения.
Привод машины — система, состоящая из двигателя и связанных с ним устрой ств дл я приведения в движение одного или нескольких твердых тел, входящих в состав машины.
Структурная схема привода включает двигатель того или иного типа и трансмиссию.
Трансмиссия — устройство для передачи вращения от двигателя к потребителям энергии; может быть механической, электрической, гидравлической, пневматической и комбинированной.
В курсовом проекте трансмиссия состоит из комбинации редуктора и открытой передачи.
Приводы транспортных машин, разнообразного станочного оборудования, вспомогательных устройств и средств механизации различных работ (стенды, установки, приспособления с машинным приводом) и т.п. допускают применение стандартных двигателей и однотипных механических передач, в том числе стандартных редукторов, что позволяет отнести эти приводы к категории общего назначения.
Машинные приводы общего назначения классифицируют по ряду признаков.
Основными из них являются:
— число двигателей и схемы соединения их с передачами;
— тип двигателя; тип передачи.
Особую группу составляют приводы, в которых используют встраиваемые двигатели или встраиваемые механические передачи — мотор-редукторы .
По числу двигателей различают приводы:
Групповым называют привод, при котором от одного двигателя посредством механических передач приводятся в движение несколько отдельных механизмов или машин. Привод этого типа применяется в различных строительных и погрузочно-разгрузочных машинах. Групповой привод имеет низкий КПД, громоздок и сложен по конструкции.
Читайте также: Редуктор соболь гидроусилитель руля
Однодвигательный привод наиболее распространен, особенно при использовании электродвигателей. Каждая производственная машина снабжается индивидуальным приводом.
Многодвигательным называется привод, если отдельные механизмы машины приводятся в движение от отдельных двигателей. При этом два или более двигателей могут соединяться с одной и той же передачей соответствующей конструкции. Многодвигательный привод используется в исполнительных механизмах строительных, путевых, грузоподъемных, транспортных и других машин и станочного оборудования и включает электродвигатели и гидромоторы .
По типу двигателей различаются приводы:
-с двигателями внутреннего сгорания,
Приводы могут иметь следующие типы передач:
По расположению механизма привода в пространстве различают:
— приводы с горизонтальным тихоходным выходным валом;
Видео:Устройство планетарного редуктора. Принцип работы и конструкция редуктора.Скачать
— приводы с вертикальным тихоходным выходным валом.
В зависимости от расположения привода конструируют элементы передач и выбирают тип и исполнение двигателя.
Редукторы
Редуктором называют агрегат, содержащий передачи зацеплением и предназначенный для повышения вращающего момента и уменьшения угловой скорости двигателя. Редукторы широко применяют в различных отраслях машиностроения благодаря высоким экономическим, потребительским и другим характеристикам. В корпусе редуктора размещены зубчатые или червячные передачи, неподвижно закрепленные на валы. Валы опираются на подшипники, размещенные в гнездах корпуса. Установка передачи в отдельном корпусе гарантирует точность сборки, лучшую смазку, более высокий КПД, меньший износ, а также защиту от попадания в нее пыли и грязи. Во всех ответственных установках вместо передач назначают редукторы. Редукторы имеют исключительно широкое применение.
Назначение редуктора — понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.
Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи — зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).
Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.
Редуктор общемашиностроительного применения — редуктор, выпол ненный в виде самостоятельного агрегата, предназначенный для привода различных машин и механизмов и удовлетворяющий комплексу техни ческих требований .
Редукторы общемашиностроительного применения, несмотря на к онструктивные различия, близки по основным технико-экономическим характеристикам: невысокие окружные скорости, средние требования к надёжности, точности и металлоемкости при повышенных требованиях по трудоемкости изготовления и себестоимости. Это их отличает от специаль ных редукторов (авиационных, судовых, автомобильных и др.) , выполненных с учетом специфических требований, характ ерных для отдельных отраслей сельского хозяйства.
Внешние (потребительские) характеристики редукторов каждого типа определяются следующим:
— кинематической схемой редуктора,
— передаточным числом u (частотой вращения выходного вала),
— вращающим моментом на выходном валу,
— допускаемой консольной нагрузкой на выходном валу,
— силовой характеристикой редуктора,
— коэффициентом полезного действия (КПД).
По ГОСТ 16162-86Е к редукторам общемашиностроительного применения относят:
— цилиндрические одно-, двух- и, трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 710 мм;
— цилиндрические планетарные одно- и двухступенчатые с радиусом расположения осей сателлитов водила тихоходной ступени r ≤ 200 мм;
— конические одноступенчатые с номинальным внешним делительным диаметром ведомого колеса d вм ≤ 630 мм;
— коническо -цилиндрические двух- и трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм;
— червячно-цилиндрические двухступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм.
В соответствии с ГОСТ 29076–91 редукторы и мотор-редукторы обще машиностроительного применения классифицируют в зависимости от :
— вида применяемых передач ( зубчатые , червячные или зубчато -червячные);
— числа ступеней ( одноступенчатые, двухступенчатые и т. д.);
— взаимного расположения геометрических осей входного и выходного валов в пространстве ( горизонтальное и вертикальное);
— типу зубчатых колес ( цилиндрические , конические, коническо -цилиндрические и т. д.);
— способа крепления редуктора (на приставных лапах или на плите, фланец со стороны входного/выходного вала насадкой);
— расположения оси выходного вала относительно плоскости основания и оси входного вала (боковое, нижнее, верхнее) и числа входных и выходных концов валов.
— особенностям кинематической схемы ( развернутая , соосная, с раздвоенной ступенью и т. д.).
Тип и конструкция редуктора определяются видом, расположением и количеством отдельных его передач (ступеней).
Самый простой зубчатый редуктор – одноступенчатый (цилиндрический (рис.1.1, а)). Используется при малых передаточных числах i ≤ 8 … 10, обычно i ≤ 6,3.
Двухступенчатый цилиндрический зубчатый редуктор (1.1,б) является наиболее распространенным (их потребность оценивается в 65%). Для них наиболее характерны числа i = 8-40.
Трехступенчатые редукторы (рис.1.1, в) применяются при больших передаточных числах. Однако имеется тенденция замены их более компактными планетарными редукторами.
Конические зубчатые редукторы применяются в том случае , когда быстроходный тихоходный валы должны быть взаимно перпендикулярны. Обычно передаточное число таких редукторов невелико i ≤ 6,3. При i >12,5 применяют коническо -цилиндрические редукторы (рис.1.1, ж).
Для улучшения работы наиболее нагруженной тихоходной ступени ( T ) используются редукторы с раздвоенной быстроходной ступенью (рис.1.1, г). Для создания равномерной нагрузки обеих зубчатых пар быстроходной ступени, их делают косозубыми, причем, одну пару правой, а вторую – левой. Зубчатые колеса на тихоходном валу располагаются симметрично. При этом деформация вала (Т) не вызывает существенной концентрации нагрузки по длине зубьев. Это положительное явление. Такие редукторы получаются на 20% легче, чем по обычной развернутой схеме (рис.1.1, в).
Видео:редуктор цилиндрический ц2уСкачать
Соосные редукторы (рис.1.1, д) применяют с целью уменьшения длины корпуса или других конструктивных особенностей привода.
Мотор-редукторы представляют собой компактные агрегаты, в которых редуктор и мотор монтируются в одном корпусе. В большинстве случаев мотор-редукторы имеют зубчатые передачи. Они более экономичны, чем тихоходные электродвигатели, имеют более высокий КПД. Но из-за сложности конструкции мотор-редукторы применяются редко.
Читайте также: Залил в редуктор уаз моста
Одноступенчатые червячные редукторы наиболее распространены. Диапазон передаточных чисел: U = 8-63. При больших значениях » U » применяют двухступенчатые червячные редукторы или комбинированные зубчато -червячные. Редукторы выполняются со следующим расположением червяка и червячного колеса:
— с нижним расположением червяка (под колесом) – применяются при окружных скоростях червяка V ≤ 5 м/ c ; смазка – окунанием червяка, допускают передачу большой мощности по критерию нагрева (рис.1.2, а).
— с верхним расположением червяка (червяк над колесом) – применяются в быстроходных передачах; смазка осуществляется окунанием колеса (рис.1.2,б).
— червяк с горизонтальной осью, сцепляющейся с колесом, имеющим вертикальную ось (рис.1.2,в).
— червяк с вертикальной осью, расположенный сбоку колеса. Колесо имеет горизонтальную ось (рис.1.2,г).
Две последних конструкции применяют ограниченно, в связи с трудностью смазки подшипников вертикальных валов
Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.
Рис.1.2. Схемы червячных редукторов: а) с нижним; б) с верхним; в, г) с боковым расположением червяка
Для обозначения передач в редукторе используют заглавные буквы русского алфавита по простому мнемоническому правилу: Ц – цилиндрическая, П – планетарная, К — коническая, Ч – червячная, Г – глобоидная, В – волновая. Количество одинаковых передач обозначается цифрой. Оси валов, расположенные в горизонтальной плоскости, не имеют обозначения. Если все валы расположены в одной вертикальной плоскости, то к обозначению типа добавляется индекс В. Если ось быстроходного вала вертикальна, то добавляется индекс Б, а к тихоходному соответственно – Т.
Мотор – редукторы обозначаются добавлением спереди буквы М. Например, МЦ2СВ означает мотор – редуктор с двухступенчатой соосной цилиндрической передачей, где горизонтальные оси вращения валов расположены в одной вертикальной плоскости, здесь В не индекс, поэтому пишется рядом с заглавной буквой.
Обозначение типоразмера редуктора складывается из его типа и главного параметра его тихоходной ступени. Для цилиндрической, червячной глобоидной передачи главным параметром является межосевое расстояние; планетарной – радиус водила, конической – диаметр основания делительного конуса колеса, волновой – внутренний посадочный диаметр гибкого колеса в недеформированном состоянии.
Под исполнением принимают передаточное число редуктора, вариант сборки и формы концов валов. Пример условного обозначения одноступенчатого цилиндрического редуктора с межосевым расстоянием 160 мм и передаточным числом 4: редуктор Ц-160-4.
Вариант сборки цилиндрических редукторов и формы концов валов по ГОСТ 20373-74; червячных редукторов – по ТУ 2.056.218-83, а коническо – цилиндрических редукторов – ГОСТ 20373-80.
Редукторы общемашиностроительного применения в приводах комплектуются преимущественно четырехполюсными электродвигателями.
По ГОСТ 16162-86Е основные параметры редукторов определяют при номинальной частоте вращения быстроходного вала n б=1500 об/мин. Допускается использование редукторов при n б=3000 об/мин, с условием, что окружная скорость зубчатых передач не превышает 16 м/с.
Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т.д.).
Двигатель и трансмиссия, как правило, монтируются на общей раме.
Новые редукторы имеют гладкие основания корпусов с утопленными лапами, а крышки имеют горизонтальные поверхности верхних частей, служащие технологическими базами (рис.1.3).
Корпуса редукторов новой конструкции имеют следующие преимущества:
1. Увеличен объем масла, что увеличивает срок его годности.
2. Возможность исключения фланцев, как основного источника неплоскостности .
3. Большая жесткость основания и податливая крышка корпуса, что улучшает виброакустические свойства.
4. Меньшее коробление при старении, что исключает течь масла;
5. Уменьшение отказов примерно на 30% из-за повышенной прочности утопленных лап.
6. Упрощение дренажирования накопленного масла от разбрызгивания из подшипниковых узлов.
7. Возможность повышения точности расположения осей валов .
8. Простота наружной обработки.
9. Отсутствие цековки под головки стяжных винтов корпуса с основанием.
10. Обеспечение требования технической эстетики.
Рис.1.3. Корпус редуктора типа КЦ 1 новой конструкции
Основные детали и показатели качества редукторов, мотор – редукторов и вариаторов
Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основани е корпуса пользуются коническими штифтами.
Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его уси ливают наружными или внутренними ребрами.
Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.
Видео:Изучение двухступенчатого цилиндрического редуктора. Детали машин.Скачать
Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по эмпирическим формулам.
Валы , как правило, подвергают улучшению до твердости НВ 270 – 300. Валы d ≤ 80 мм допускается изготавливать из стали 45; диаметром d = 80-125 – из стали 40 X ; а валы d = 125 – 200 мм – из стали 40ХН; 35ХМ. Тихоходные валы имеют выходной конец, в котором напряжения кручения составляют около 28 МПа концы валов целесообразно выполнять коническими.
Опоры валов редукторов выполняются в виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.
В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.
Читайте также: Смазка для редукторов культиваторов чемпион
Смазка зацепления при V ≤ 12,5 м/ c рекомендуется картерная (окунанием). Емкость масляной ванны назначают из расчета 0,35 – 0,7 литра на I кВт передаваемой мощности (большие значения – при большей вязкости масла и наоборот). Зубчатые колеса следует погружать в масло на глубину 3-4 модуля. Тихоходные колеса (2-й и 3-й ступени) при необходимости допустимо погружать на величину до 1/3 диаметра колеса. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку, осуществляемую под давлением. Масло, прокачиваемое насосом, проходит через фильтр и при необходимости через охладитель, а затем поступает к зубьям через трубопровод и сопла. При окружной скорости V ≤ 20 м/ c для прямозубых передач и при V ≤ 50 м/с для косозубых масло подается непосредственно в зону зацепления. При V > 50 м/ c ( V > 20 м/ c ) , во избежание гидравлического удара, масло подается раздельно на шестерню и колесо и на некотором расстоянии от зоны зацепления.
Смазка подшипников редуктора при V > 4 м/ c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V м/ с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.
Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.
Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.
— бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (рис. 1.4).
— болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.
— б иметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.
Рис.1.4.Типовые конструкции зубчатых венцов червячных колес
В червячных передачах, как правило, применяются подшипники качения.
Смазка червячных передач с нижним расположением червяка (рис. 1.2) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.
Важнейший характеристический размер, в основном определяющий нагрузочную способность, габариты и массу редуктора называют главным параметром редуктора. Главный параметр цилиндрических, червячных и глобоидных редукторов — межосевое расстояние aw тихоходной ступени, планетарных — радиус r водила , конических — номинальный внешний делительный диаметр de 2 колеса , волновых — внутренний диаметр d 2 гибкого колеса.
Для многоступенчатых редукторов и мотор-редукторов показателями назначения являются межосевое расстояние и радиус расположения осей сателлитов и задают их по величине выходной ступени с обозначением a ω T и R т.
Основная энергетическая характеристика редуктора – номинальный момент Тном , представляющий собой допустимый крутящий момент на его тихоходном (ведомом) валу при постоянной нагрузке.
Рекомендуемый ряд крутящих моментов на тихоходных валах редукторов в соответствии с проектом международного стандарта составляет по нормальному ряду чисел со знаменателем 2 в диапазоне 1-125 Н ∙ м и со знаменателем 1,41 в диапазоне 125–1000000 Н ∙ м .
Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд).
Межосевые расстояния быстроходной ( α w Б) и тихоходной ( α wT ) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ
Одноступенчатые редукторы имеют наибольшие передаточные числа u :
— для цилиндрических передач до 8;
Выпускаются редукторы и мотор-редукторы в широком диапазоне передаточных чисел: от u min =1 (для одноступенчатых конических и цилиндрических редукторов) до u max =3150 (для мотор-редукторов, планетарных и некоторых других типов редукторов). Большинство отечественных и зарубежных редукторов имеют u ≤ 160. Около 75 % редукторов выполняют в двухступенчатом исполнении ( u =8-40).
Номинальные значения передаточных чисел редукторов установлены двумя рядами (1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 и т.д.).
Редукторы общемашиностроительного применения допускают вращающие моменты на выходном валу Тт =(31,5-125000) Нм .
Для обеспечения взаимозаменяемости редукторов составлены три ряда номинальных значений моментов Тт ( Нм ).
Так, ряд 1 включает значения Тт =31,5; 45; 63; 90; 125; 180; 250; 355; 500; 710; 1000 и др.
Реальный диапазон передаточных отношений (чисел) редукторов — от 1 до 1000. Значения передаточных отношений должны соответствовать ряду R 20 предпочтительных чисел (ГОСТ 8032–84).
Критерием технического уровня редуктора служит относительная масса Y = т /Т , где т — масса редуктора, кг; Т — вращающий момент, Нм .
Тип редуктора, параметры и конструкцию определяют в зависимости от его места в силовой цепи машины, передаваемой мощности, частоты вращения, назначения машины и условий ее эксплуатации.
При проектировании назначенного типа редуктора за исходные принимают следующие данные: передаточное отношение, вращающий момент на тихоходном валу, частоту вращения быстроходного вала, режим нагружения , необходимую долговечность, технологические возможности завода-изготовителя (имеющиеся материалы, типы загото вок, виды проводимых термической и термохимической обработок).
К определяющим параметрам относят межосевые расстояния, внешние делительные диаметры конических колес, радиусы водил или дели тельные диаметры центральных колес с внутренними зубьями в плане тарных передачах, ширину колес, модули и передаточные отношения, коэффициенты, диаметры червяка и число винтов червяка (для червячных передач).
Классификационные группировки редукторов, мотор-редукторов и вариаторов приведены в таблице 1.
- Свежие записи
- Чем отличается двухтактный мотор от четырехтактного
- Сколько масла заливать в редуктор мотоблока
- Какие моторы бывают у стиральных машин
- Какие валы отсутствуют в двухвальной кпп
- Как снять стопорную шайбу с вала
Видео:Работа соосного редуктораСкачать
🎦 Видео
РАБОТА ЦИЛИНДРИЧЕСКОГО РЕДУКТОРА. Анимация. Детали машин.Скачать
Принцип работы редуктора. Виды редукторов. Курсовая.Скачать
Вал двухступенчатого редуктора ➤ Курсовой проект одного из студентовСкачать
Цилиндрические редукторы от завода-изготовителя в РФСкачать
Чтение сборочного чертежа редуктора. Чтение чертежейСкачать
цилиндрические соосные редукторы Motovario HA HUСкачать
6.2 Кинематический расчет приводаСкачать
Уникальный БПЛА прошел испытания: первый в своем роде КАР-112Скачать
Редуктор цилиндрический двухступенчатыйСкачать
Двухступенчатый цилиндрический редуктор с прямозубо шевронным зацеплениемСкачать
Цилиндрические редукторыСкачать
Редуктор соосный двухступенчатый и механизм с качающейся шайбойСкачать
Разбираем чертеж шестерни двухступенчатого редуктораСкачать
Двухступенчатый редуктор с центробежным сцеплением.Скачать