Схемы регуляторов мощности моторов

Управление скоростью вращения однофазных двигателей

Схемы регуляторов мощности моторов

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Схемы регуляторов мощности моторовСхемы регуляторов мощности моторов

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Видео:РЕГУЛЯТОР НАПРЯЖЕНИЯСкачать

РЕГУЛЯТОР НАПРЯЖЕНИЯ

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Схемы регуляторов мощности моторов

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Схемы регуляторов мощности моторов

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

      Схемы регуляторов мощности моторов

      Недостатки:

          • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
          • все недостатки присущие регулировке напряжением

          Схемы регуляторов мощности моторовСхемы регуляторов мощности моторов

          Тиристорный регулятор оборотов двигателя

          В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

          Схемы регуляторов мощности моторов

          Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

          Схемы регуляторов мощности моторов

          Таким образом изменяется среднеквадратичное значение напряжения.

          Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

          Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

          Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

          • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
          • добавляют на выходе конденсатор для корректировки формы волны напряжения
          • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
          • используют тиристоры с током в несколько раз превышающим ток электромотора

          Схемы регуляторов мощности моторов

          Достоинства тиристорных регуляторов:

          Схемы регуляторов мощности моторов

          Недостатки:

              • можно использовать для двигателей небольшой мощности
              • при работе возможен шум, треск, рывки двигателя
              • при использовании симисторов на двигатель попадает постоянное напряжение
              • все недостатки регулирования напряжением

              Схемы регуляторов мощности моторовСхемы регуляторов мощности моторов

              Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

              Транзисторный регулятор напряжения

              Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

              Схемы регуляторов мощности моторов

              Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

              Схемы регуляторов мощности моторов

              Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

              Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

              Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

              Схемы регуляторов мощности моторов

              Плюсы электронного автотрансформатора:

                    • Небольшие габариты и масса прибора
                    • Невысокая стоимость
                    • Чистая, неискажённая форма выходного тока
                    • Отсутствует гул на низких оборотах
                    • Управление сигналом 0-10 Вольт

                    Схемы регуляторов мощности моторов

                    Слабые стороны:

                          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
                          • Все недостатки регулировки напряжением

                          Видео:Супер-регулятор мощности на пяти деталях. Схема+пояснение.Скачать

                          Супер-регулятор мощности на пяти деталях.  Схема+пояснение.

                          Частотное регулирование

                          Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

                          Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

                          На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

                          Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

                          Читайте также: Мотор редуктор для nsx 400

                          Однофазные двигатели могут управляться:

                          • специализированными однофазными ПЧ
                          • трёхфазными ПЧ с исключением конденсатора

                          Преобразователи для однофазных двигателей

                          В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

                          Это модель Optidrive E2

                          Схемы регуляторов мощности моторов

                          Для стабильного запуска и работы двигателя используются специальные алгоритмы.

                          При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

                          В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

                          Схемы регуляторов мощности моторов

                          Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

                          Схемы регуляторов мощности моторов

                          Преимущества специализированного частотного преобразователя:

                                • интеллектуальное управление двигателем
                                • стабильно устойчивая работа двигателя
                                • огромные возможности современных ПЧ:
                                  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
                                  • многочисленные защиты (двигателя и самого прибора)
                                  • входы для датчиков (цифровые и аналоговые)
                                  • различные выходы
                                  • коммуникационный интерфейс (для управления, мониторинга)
                                  • предустановленные скорости
                                  • ПИД-регулятор

                                  Схемы регуляторов мощности моторов

                                  Минусы использования однофазного ПЧ:

                                  Использование ЧП для трёхфазных двигателей

                                  Схемы регуляторов мощности моторов

                                  Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

                                  Схемы регуляторов мощности моторов

                                  Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

                                  Схемы регуляторов мощности моторов

                                  Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

                                  В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

                                  При работе без конденсатора это приведёт к:

                                  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
                                  • разному току в обмотках

                                  Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

                                  Схемы регуляторов мощности моторов

                                  Преимущества:

                                          • более низкая стоимость по сравнению со специализированными ПЧ
                                          • огромный выбор по мощности и производителям
                                          • более широкий диапазон регулирования частоты
                                          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

                                          Схемы регуляторов мощности моторов

                                          Недостатки метода:

                                                  • необходимость предварительного подбора ПЧ и двигателя для совместной работы
                                                  • пульсирующий и пониженный момент
                                                  • повышенный нагрев
                                                  • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

                                                  Видео:✅ Эта схема выдержит многое! Бомбический регулятор мощности на тиристоре КУ202 своими руками! ✅Скачать

                                                  ✅ Эта схема выдержит многое! Бомбический регулятор мощности на тиристоре КУ202 своими руками! ✅

                                                  Регулятор оборотов коллекторного двигателя с поддержанием мощности

                                                  Во многих электронных схемах используются системы активного охлаждения с вентиляторами. Чаще всего их моторы управляются микроконтроллером или другой специализированной микросхемой, а скорость вращения регулируется с помощью ШИМ. Такое решение характеризуется не слишком хорошей плавностью работы, может привести к нестабильной работе вентилятора, а кроме того, создает много помех.

                                                  Для потребностей высококачественной аудиотехники разработан аналоговый регулятор оборотов вентилятора. Схема пригодится при строительстве усилителей НЧ с активной системой охлаждения и позволяет выполнить плавную регулировку оборотов вентиляторов в зависимости от температуры. Производительность и мощность зависит в основном от выходного транзистора, тесты проводились с выходными токами до 2 А, что позволяет подключить даже несколько больших вентиляторов на 12 В. Естественно можно применить это устройство и для управления обычными моторами постоянного тока, при необходимости повысив питающее напряжение. Хотя для совсем уже мощных двигателей придётся задействовать системы плавного пуска tehprivod.su/katalog/ustroystva-plavnogo-puska

                                                  Видео:Супер регулятор мощности 220в 5КВт. Всего 5 деталей.Скачать

                                                  Супер регулятор мощности 220в 5КВт.  Всего 5 деталей.

                                                  Принципиальная схема регулятора оборотов мотора

                                                  Схема состоит из двух частей: дифференциального усилителя и стабилизатора напряжения. Первая часть занимается измерением температуры и обеспечивает напряжение, пропорциональное температуре, когда она превышает установленный порог. Это напряжение является управляющим для стабилизатора напряжения, выход которого контролирует питание вентиляторов.

                                                  Схема регулятора оборотов электродвигателя постоянного тока приведена на рисунке. Основа — компаратор U2 (LM393), работающий в этой конфигурации как обычный операционный усилитель. Первая его часть U2A работает как усилитель дифференциальный, чьи условия работы определяют резисторы R4-R5 (47k) и R6-R7 (220k). Конденсатор C10 (22pF) улучшает стабильность усилителя, а R12 (10k) подтягивает выход компаратора к плюсу питания.

                                                  На один из входов дифференциального усилителя подается напряжение, которое образуется через делитель, состоящий из R2 (6,8k), R3 (680 Ом) и PR1 (500 Ом), и фильтруется с помощью C4 (100nF). На второй вход этого усилителя поступает напряжение с датчика температуры, который в данном случае один из разъемов транзистора T1 (BD139), поляризованный небольшим током с помощью R1 (6,8k).

                                                  Конденсатор C2 (100nF) был добавлен, чтобы фильтровать напряжение с датчика температуры. Полярность датчика и делителя опорного напряжения задает стабилизатор U1 (78L05) вместе с конденсаторами C1 (1000uF/16V), C3 (100nF) и C5 (47uF/25V), предоставляя стабилизированное напряжение 5 В.

                                                  Компаратор U2B работает как классический усилитель ошибки. Он сравнивает напряжение с выхода дифференциального усилителя с выходным напряжением с помощью цепочки R10 (3,3k), R11 (47 Ом) и PR2 (200 Ом). Исполнительным элементом стабилизатора является транзистор T2 (IRF5305), база которого управляется делителем R8 (10k) и R9 (5,1k).

                                                  Конденсатор C6 (1uF) и C7 (22pF) и C9 (10nF) улучшают стабильность петли обратной связи. Конденсатор C8 (1000uF/16V) фильтрует выходное напряжение, он имеет значительное влияние на стабильность системы. Разъемом выхода — AR2 (TB2), а разъем питания — AR1 (TB2).

                                                  Читайте также: Что лучше подвесной лодочный мотор или стационарный

                                                  Благодаря применению выходного транзистора с низким сопротивлением в открытом состоянии, схема обладает очень малым падением напряжения — порядка 50 мВ при выходном токе 1 А, что не требует блока питания с более высоким напряжением для управления вентиляторами, работающие на 12 В.

                                                  В большинстве случаев в роли U2 можно применить популярный операционный усилитель LM358, правда несколько ухудшив выходные параметры.



                                                  Наконец, начали «доходить» руки до самодельного точильного станка. В наличии был универсальный коллекторный электродвигатель УВ 051-Ц. Скорость его 7000 об/мин, что в двое больше, чем нужно для электроточила. Вдобавок, хотелось иметь регулировку оборотов (желательно с обратной связью). Пришлось собирать схему, которая отвечала всем запросам.
                                                  Итак, как я пришел к тому, что скорость нужно снизить вдвое. На точильных камнях, обычно, есть надпись на какой максимальной скорости они могут работать. Чаще всего – это 25-30 м/с. Чтобы рассчитать необходимое количество оборотов электродвигателя для точильного станка – есть формула. Количество оборотов = (допустимые обороты на камне / диаметр точильного круга (в метрах) *3,14 )*60 секунд. Итого, максимальное количество оборотов электродвигателя для камня, который я приобрел = (25/0.15+3.14)*60, что приблизительно равно 3185 об/мин. Вывод: скорость 7000 об/мин электродвигателя УВ 051-Ц нужно снизить вдвое.

                                                  В результате поисков, наткнулся на простую схему регулятора оборотов коллекторного электродвигателя 220 вольт с обратной связью. Информации по ней было не много, т.к., возможно, мало кто ее собирал, сомневаясь в ее работоспособности, видя насколько она примитивна. Я же ее собрал на кусочке монтажной платы, произвел отладку, убедился в работоспособности.

                                                  Теперь пересказ принципа действия схемы регулятора оборотов коллекторного электродвигателя с обратной связью. R1+R2+C1 – формирует опорное напряжение, задающее скорость вращения двигателя. В момент приложения нагрузки, скорость вращения падает, снижается крутящий момент. Возникающая в двигателе и приложенная между управляющим контактом и катодом тиристора противо-ЭДС уменьшается. Пропорционально уменьшению противо-ЭДС увеличивается напряжение на управляющем контакте тиристора. Такое увеличение напряжение заставляет тиристор срабатывать при меньшем фазовом угле, и в следствии, подавать на двигатель больший ток.

                                                  Тиристор нужно подбирать в зависимости от мощности электродвигателя. Мне хватило MCR100-8, в оригинальной схеме – КУ202Н. Под тиристор подбирается сопротивление резистора R3. Если тиристор КУ202Н – R3 можно не ставить. Диоды можно заменить на любые с аналогичными параметрами Д226, 1N4007 и т.д. С1 может быть в пределах 0,1-2uF, им устраняются рывки двигателя на малых оборотах. Конденсаторы с рабочим напряжением 250 вольт.



                                                  Видео:Китайский регулятор мощности на симисторе на 2 кВт с AliExpress Диммер Бытовой обзорСкачать

                                                  Китайский регулятор мощности на симисторе на 2 кВт с AliExpress Диммер Бытовой обзор

                                                  Сборка регулятора

                                                  Монтаж следует начинать с установки двух перемычек, затем должны быть установлены все резисторы и мелкие керамические конденсаторы.

                                                  Далее устанавливаем переменные резисторы, стабилизатор и все разъемы, заканчивая большими электролитическими конденсаторами. Транзисторы T1 и T2 оставляем на самый конец.

                                                  В большинстве случаев оба эти элемента будут установлены снизу платы на ножках, изогнутых под углом 90 градусов. Такая укладка позволит их прикрутить непосредственно к радиатору (обязательно использовать изоляционные прокладки).



                                                  Видео:РЕГУЛЯТОР ОБОРОТОВ двигателя стиральной машины с Aliexpress. Подключение, реверс, схемаСкачать

                                                  РЕГУЛЯТОР ОБОРОТОВ двигателя стиральной машины с Aliexpress. Подключение, реверс, схема

                                                  Регулятор оборотов электродвигателя без потери мощности

                                                  Плата регулировки оборотов коллекторных электродвигателей на микросхеме TDA1085, позволяет управлять двигателями без потери мощности.Обязательным условием при этом является наличие таходатчика (тахогенератор) на электродвигателе, который позволяет обеспечить обратную связь мотора с платой регулировки, а именно с микросхемой. Если говорить более простым языком, что бы было понятно всем, происходит примерно следующее. Мотор вращается с каким-то количеством оборотов, а установленный таходатчик на валу электромотора эти показания фиксирует. Если вы начинаете нагружать двигатель, частота вращения вала естественно начнет падать, что так же будет фиксировать таходатчик. Теперь рассмотрим дальше. Сигнал с этого таходатчика поступает на микросхему, она видит это и дает команду силовым элементам, добавить напряжение на электромотор.Таким образом, когда вы надавили на вал (даете нагрузку), плата автоматически прибавила напряжение и мощность на этом валу возросла. И наоборот, отпусти вал двигателя (сняли с него нагрузку), она увидела это и убавила напряжение. Таким образом обороты остаются не низменными, а момент силы (крутящий момент)постоянным. И самое что важное, вы можете регулировать частоту вращения ротора в широком диапазоне, что очень удобно в применении и конструировании различных устройств. Поэтому этот продукт, так и называется «Плата регулировки оборотов коллекторных двигателей без потери мощности».

                                                  Но мы увидели одну особенность, что эта плата применима только для коллекторных электродвигателей (с электрическими щетками). Конечно такие моторы в быту встречаются намного реже чем асинхронные. Но они нашли широкое применение в стиральных машинах автомат. Вот именно по этому была изготовлена эта схема. Специально для электродвигателя от стиральной машины автомат. Их мощность достаточно приличная, от 200 до 800 ватт. Что позволяет достаточно широко применить их в быту.

                                                  Данный продукт, уже нашел широкое применение в хозяйстве людей и широко охватил лиц занимающихся различным хобби и профессиональной деятельностью.

                                                  Отвечая на вопрос — Куда можно применить двигатель от стиральной машины? Был сформирован некоторый список. Самодельный токарный станок по дереву; Гриндер; Электропривод для бетономешалки; Точило; Электропривод для медогонки; Соломорезка; Самодельный гончарный круг; Электрическая газонокосилка; Дровокол и много другое где необходимо механическое вращение каких либо механизмов или предметов. И во всех этих случаях нам помогает эта плата «Регулировки оборотов электродвигателей с поддержанием мощности на TDA1085».

                                                  Краш-тест платы регулировки оборотов



                                                  Видео:Регулятор мощности на тиристоре до 2 кВт 220 вСкачать

                                                  Регулятор мощности на тиристоре  до 2 кВт 220 в

                                                  Простой регулятор скорости для коллекторного двигателя.

                                                  Описание регулятора скорости коллекторного двигателя. Регулятор скорости коллекторного электродвигателя предназначен для работы с любой аппаратурой пропорционального управления и служит для плавного регулирования оборотов двигателя от минимальных до максимальных. Подключается к приемнику, как обычно, к каналу № 3. С КРЕНки регулятора поступает напряжение + 5….6 Вольт для питания приемника и рулевых машинок.

                                                  Читайте также: Компрессия для подвесных моторов

                                                  Принцип работы регулятора следующий. На микросхемы К561ЛА7 собран формирмирователь разностного импульса. На элементах 1 и 2 микросхемы собран ждущий мультивибратор. Он запускается PPM импульсом приходящим с канала 3 приемника. С выхода приемника импульс имеет положительную полярность, а ждущий мультивибратор срабатывает по спаду положительного импульса, поэтому на транзисторе КТ3102 собран инвертер импульса. При появлении на входе схемы РРМ сигнала, синхронно с ним запускается ждущий мультивибратор, который генерирует импульс фиксированной длительности – 1 мс. Его длительность (1 мс) задается подбором резистора *150 Ком. Длительность импульса ждущего мультивибратора всегда постоянна и равна 1 мс. А длительность КИ, поступающего с приемника, изменяется пропорционально положению ручки ГАЗ передатчика. На элементах 3 и 4 МС К561ЛА7 собран формирователь разностного импульса. Этот импульс появляется на выводе 10 МС при превышении входным КИ, длительности импульса, сформированного ждущим мультивибратором. При отклонении ручки ГАЗ от минимального до максимального положения, длительность разностного импульса с выхода 10 МС изменяется от 1 мс до 2 х мс. Это изменение длительности разностного импульса управляет компаратором на МС К157УД2. Принцип его работы следующий — через делитель на резисторах по 100 Ком заряжается конденсатор 0,1 мкф, соединяющий анод диода КД522 с общим проводом, до напряжения порядка 3х Вольт. Это напряжение прикладывается к выводу 5 МС К157УД2. Подстроечным резистором 22 Ком на выводе 6 устанавливается пороговое напряжение срабатывания компаратора. Оно чуть менее 3 х Вольт, порядка 2,7 Вольт. Катод диода подключен в к выводу 10. Когда на выводе 10 возникает разностный импульс отрицательной полярности, конденсатор начинает разряжаться через диод и внутреннее сопротивление выходного транзистора микросхемы. Таким образом степень разряда конденсатора (величина уменьшения напряжения на нем) зависит от длительности (ширины) разностного импульса, что в конечном счете определяет время нахождения компаратора во включенном состоянии и ширину импульса на его выходе – вывод 9. Через резистивный делитель 10 ком –100 ком выходные импульсы компаратора управляют затвором полевого транзистора. В цепи его стока и + шины питания 12 Вольт включен коллекторный электродвигатель. В результате при переводе ручки ГАЗ передатчика из положения минимум в положение максимум изменяется ширина разностного импульса, степень разряда конденсатора 0,1 мкф, время нахождения компаратора в открытом состоянии и изменяются обороты электродвигателя. На плату подается напряжение 12 Вольт от бортового аккумулятора. КРЕНка стабилизатора 5 вольтовая, но наличие в минусовом выводе резистора, позволяет подобрать на выходе стабилизатора напряжение в пределах 5…..6 Вольт. Без резистора напряжение равно +5 Вольт. Ток нагрузки 1 Ампер. Этого более чем достаточно для питания приемника и рулевых машинок. Ключевой транзистор – полевой MOSFET. Принципиальная схема узла выделения командного импульса. Принципиальная схема регулятора скорости. Рисунок печатной платы со стороны деталей. Рисунок печатной платы со стороны дорожек. Монтажка. Регулятор скорости установлен на модель. Файл разводки печатной платы (Регулятор хода КД.lay)

                                                  Видео:Самый лучший Регулятор оборотов коллекторных двигателейСкачать

                                                  Самый лучший Регулятор оборотов коллекторных двигателей

                                                  Что такое управление с обратной связью?

                                                  В механизмах или системах часто необходимо установить предварительно заданные значения таких переменных, как давление, температура или расход. Боле того, такие установленные значения не должны изменяться даже в случае возникновения каких-либо возмущений. Выполнение данных функций обеспечивается управлением с обратной связью.

                                                  Управление с обратной связью позволяет устранять любые вопросы, связанные с данной задачей.

                                                  Чтобы переменной можно было управлять, и чтобы она была доступна регулятору с обратной связью в виде электрического сигнала, сначала ее необходимо измерить и соответствующим образом преобразовать.

                                                  Эту переменную необходимо сравнить с заданным значением или шаблоном значений в регуляторе. После чего по результатам этого сравнения следует определить требуемую реакцию в системе.

                                                  И наконец, в системе следует найти соответствующую точку, посредством которой можно регулировать данную переменную (например, привод нагревателя). Чтобы иметь такую возможность, важно обладать данными о поведении системы.

                                                  Технология управления с обратной связью предполагает попытку установления общеприменимых взаимосвязей, которые повсеместно возникают при применении различных технологий. В большинстве учебников это объясняется при помощи высшей математики. Цель этой главы заключается в том, чтобы объяснить основную терминологию и привести сведения по технологии управления с обратной связью в основном без привлечения математики.

                                                  Технология
                                                  управлениябез обратной связи/с обратной связью
                                                  Управление без обратной связи

                                                  В стандарте IEC 60050-351 дается следующее определение: Управление без обратной связи – это процесс в системе, где одна или несколько переменных в качестве входных переменных воздействуют на другие переменные (как выходные переменные) по законам, уникальным для системы.

                                                  Отличительная характеристика управления без обратной связи – это разомкнутый поток действий, т.е. выходная переменная никак не влияет на входную переменную.

                                                  Управление
                                                  собратнойсвязью
                                                  В стандарте IEC 60050-351 дается следующее определение: Управление с обратной связью – это процесс в системе, где управляемая переменная (регулируемая переменная) постоянно контролируется и сравнивается с заданным значением (опорная переменная). В зависимости от результата такого сравнения входная переменная системы изменяется так, чтобы произошла регулировка выходной переменной до заданного значения независимо от всех отклонений. В результате такой реакции системы возникает замкнутый поток действий.

                                                  • Свежие записи
                                                    • Чем отличается двухтактный мотор от четырехтактного
                                                    • Сколько масла заливать в редуктор мотоблока
                                                    • Какие моторы бывают у стиральных машин
                                                    • Какие валы отсутствуют в двухвальной кпп
                                                    • Как снять стопорную шайбу с вала


                                                    📹 Видео

                                                    Реальная мощность китайских диммеров (регуляторов мощности / симисторных регуляторов)Скачать

                                                    Реальная мощность китайских диммеров (регуляторов мощности / симисторных регуляторов)

                                                    #595 Получение характеристик генератора для велотренажёраСкачать

                                                    #595 Получение характеристик генератора для велотренажёра

                                                    Лучший регулятор мощности на 220ВСкачать

                                                    Лучший регулятор мощности на 220В

                                                    Регулятор оборотов заводская схема, супер простая Неонка в место динистораСкачать

                                                    Регулятор оборотов заводская схема, супер простая  Неонка в место динистора

                                                    Регулятор оборотов двигателя с поддержкой мощности без таходатчикаСкачать

                                                    Регулятор оборотов двигателя с поддержкой мощности без таходатчика

                                                    Регулятор - Стабилизатор оборотов мотора от стиралки. Простая схема стабилизатораСкачать

                                                    Регулятор - Стабилизатор оборотов мотора от стиралки. Простая схема стабилизатора

                                                    Нереально Простой регулятор оборотов! С поддержанием мощности Без микросхем и тахогенератора!Скачать

                                                    Нереально Простой регулятор оборотов! С поддержанием мощности   Без микросхем и тахогенератора!

                                                    Диммер своими руками - регулятор мощности на симистореСкачать

                                                    Диммер своими руками - регулятор мощности на симисторе

                                                    Простой регулятор напряжения на одном MOSFET транзисторе! Только две детали!Скачать

                                                    Простой регулятор напряжения на одном MOSFET транзисторе! Только две детали!

                                                    Как работает симисторный регулятор мощностиСкачать

                                                    Как работает симисторный регулятор мощности

                                                    Регуляторы мощности, на тиристоре и транзисторе. Диммер 12-230 VСкачать

                                                    Регуляторы мощности, на тиристоре и транзисторе. Диммер 12-230 V

                                                    ПРОСТОЙ ~регулятор оборотов~ для БОЛГАРКИ,ДРЕЛИ и др/Делаем самиСкачать

                                                    ПРОСТОЙ ~регулятор оборотов~ для БОЛГАРКИ,ДРЕЛИ и др/Делаем сами
Поделиться или сохранить к себе:
Технарь знаток