Шестерня ведущая в компрессоре

Надежность в работе, малая удельная металлоемкость и габаритные размеры предопределили широкое распространение винтовых компрессоров. В частности, они практически полностью вытеснили другие типы компрессоров в передвижных компрессорных станциях, судовых холодильных установках.

Типовая конструкция двухроторного компрессора сухого сжатия, работающего без подачи масла в рабочую полость, показана на рис. 3.7. На ведомом роторе 1 выполнена винтовая нарезка с впадинами. Ведущий винтовой ротор 2 с выпуклой нарезкой соединен непосредственно или через зубчатую передачу с двигателем. Между роторами существует минимальный зазор, обеспечивающий безопасную работу компрессора, а синхронизация их вращения происходит при помощи шестерен 3. Роторы расположены в горизонтально-разъемном корпусе 4, имеющем несколько разъемов, а также расточки под винты, подшипники, уплотнения и камеры всасывания и нагнетания.

Рис. 3.7.Винтовой компрессор сухого трения: 1 и 2 – ведомый и ведущий роторы;
3 – синхронизирующие шестерни; 4 – корпус

Уплотнения, состоящие из графитовых или баббитовых колец, отделяют подшипниковые узлы от рабочего объема корпуса. Между группами колец подается запирающий газ, препятствующий попаданию масла из подшипников в сжимаемый газ.

На рис. 3.8 схематично изображен принцип работы винтового компрессора. Между винтовыми поверхностями роторов и стенками корпуса образуются рабочие камеры (число их равно количеству заходов винтовой нарезки). Рассмотрим рабочий процесс на примере одной из камер. При вращении роторов объем камеры увеличивается; когда выступы роторов удаляются от впадин, происходит процесс всасывания (рис. 3.8 а). Когда объем камеры достигает максимума, процесс всасывания заканчивается, и камера оказывается изолированной стенками корпуса и крышками от всасывающего и нагнетательного патрубков. При дальнейшем вращении во впадину ведомого ротора начинает внедряться сопряженный выступ ведущего ротора. Внедрение начинается у переднего торца и постепенно распространяется к нагнетательному окну. С некоторого момента времени обе винтовые нарезки образуют общую полость (рис. 3.8 б), объем которой непрерывно уменьшается благодаря поступательному перемещению линии контактирования сопряженных элементов по направлению к нагнетательному окну. Дальнейшее вращение роторов приводит к вытеснению газа из полости в нагнетательный патрубок (рис. 3.8 c). Благодаря наличию нескольких камер и высокой частоте вращения роторов компрессор создает непрерывный поток газа.

Рис. 3.8.Процесс работы винтового компрессора

Отсутствие клапанов обеспечивает винтовым компрессорам возможность работать с высокими частотами вращения, т. е. получать большую производительность при сравнительно небольших габаритах. Существует также однороторная конструкция винтового компрессора, где замыкание камер реализуется при помощи двух отсечных шестерен, причем оси их вращения нормальны к плоскости, в которой лежит ось вращения ротора.

Видео:Шестеренный насос - устройство, принцип работы, применениеСкачать

Шестеренный насос - устройство, принцип работы, применение

ЦЕНТРАЛЬНЫЙ ПРИВОД

Центральный привод предназначен для передачи крутящего момента с ротора турбокомпрессора на коробку приводов и маслоагрегат, а также при запуске (прокрутке) двигателя для передачи крутящего момента на ротор

турбокомпрессора от воздушного стартёра СВ − 78БА. Центральный привод состоит из:

Корпус центрального привода, задним фланцем крепится к корпусу первой опоры двигателя.

Рис. 2.39. Центральный привод.

Вращение от ротора турбокомпрессора на ведущую шестерню передается через рессору, которая задними шлицами входит в шлицы внутренней полости передней цапфы компрессора (2), а передними — в шлицы внутренней полости ведущей шестерни.

От ведущей шестерни вращение передается через шестерню и рессору (1) в коробку приводов, а через шестерню и рессору (3) к маслоагрегату (рис.2.39).

Смазка и охлаждение центрального привода производится маслом, поступающим из коробки приводов. Масло подается к жиклерным отверстиям:

А — для смазки шарикоподшипников ведомой шестерни коробки приводов; Г — для смазки шарикоподшипников ведомой шестерни маслоагрегата; Ж — для смазки шарикоподшипников ведущей шестерни; К — для смазки шлицев рессоры привода коробки приводов; Б и В — смазки шлицев ведущей шестерни и рессоры; Е — для смазки переднего подшипника компрессора; И — в зону зацепления конических шестерен.

Суммарный расход масла через центральный привод составляет 3,2 + − 1,0 0,1 л/мин.

ПРИВОД РЕГУЛЯТОРА ЧАСТОТЫ ВРАЩЕНИЯ СВОБОДНОЙ ТУРБИНЫ

Привод регулятора частоты вращения свободной турбины предназначен для передачи вращения от вала свободной турбины к тахометрическому датчику

регулятора частоты вращения свободной турбины насоса − регулятора НР − 3В.

Видео:Компрессор воздушный безмасляный Sturm AC93450OLСкачать

Компрессор воздушный безмасляный Sturm AC93450OL

Турбореактивный двигатель с центробежным компрессором

(на схемах часто обозначается
МК
) — агрегат, совмещающий в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус, автобус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников (см.: Холодильный компрессор

) и кондиционеров, в которых перекачивают хладагент.

Видео:Ременная передача. Урок №3Скачать

Ременная передача. Урок №3

Мотор-компрессор ЭК-4Б вагонов метро

Мотор-компрессор ЭК-4Б предназначен для производства сжатого воздуха на вагоне и его нагнетания в главный резервуар с целью накопления.

Установлен под вагоном в его хвостовой части в районе второй тележки и крепится к специальным кронштейнам рамы кузова при помощи трех болтов с использованием резинометаллических втулок-амортизаторов.

Рис. 2.10. Компрессор. Общий вид и базовые составные части

Состоит из трех основных узлов — электродвигателя (1), компрессора (3) и редуктора (2). Осевая линия валов мотор-компрессора располагается поперек кузова вагона, а электродвигатель крепится к корпусу (картеру) компрессора при помощи шести болтов М16. Картер компрессора, отливаемый из серого чугуна, является деталью, на которой монтируются все остальные узлы. Доступ в корпус осуществляется через окна, закрываемые крышками. Связующим звеном между электродвигателем и компрессором является двухступенчатый редуктор.

Рис. 2.11. Работа компрессора

Видео:Тихий китайский компрессор для нейлера #инструмент #строительство #tools #компрессорСкачать

Тихий китайский компрессор для нейлера #инструмент #строительство #tools #компрессор

Электродвигатель

Предназначен для создания крутящего момента на коленчатом валу компрессора.

Рис. 2.12. Двигатель мотор-компрессора. Составные части

Узел двигателя состоит из следующих элементов: электродвигателя (1), прессшпановой прокладки (2), малой (ведущей) шестерни (3), которая фиксируется на валу электродвигателя с помощью шпонки (7), упорной шайбы (4) и пластинчатой шайбы (5), а также двух болтов (6).

Электродвигатель ДК-408В представляет собой четырёхполюсную коллекторную машину постоянного тока с напряжением питания 750 В

мощностью 4,5
кВт
и частотой вращения якоря (вала двигателя) 1500
об/мин
.

Оборудование / Компрессорное оборудование / Мини — компрессор из холодильника / Электрооборудование мотор-компрессоров. Двигатели ДХ и ФГ.

Поводом к написанию этой статьи послужил один комментарий с вопросом и попавший ко мне неисправный агрегат от холодильника. Коментарий: После 10-15 секунд работы двигатель отключается,что может стать причиной?

Во времена СССР в производстве холодильников в основном использовались два типа мотор-компрессоров: ДХ и ФГ-0,100 (LS-08B). Зарубежные типы компрессоров здесь не рассматриваю, так как они не часто попадают в руки к самодельщикам. Ниже рассмотрим мотор-компрессор со стороны электротехники. Но сперва вкратце об устройстве компрессоров ДХ и ФГ и их отличиях.

Мотор-компрессоры ДХ и ФГ-0,100 различаются по подвеске. ДХ компрессор и двигатель закреплены жесткое кожухе, подвешенном на раме с пружинами. Компрессор и двигатель мотор-компрессора ФГ-0,100 подвешены на пружинах внутри кожуха, а кожух жестко закреплен на раме. По внутренней конструкции компрессорные установки тоже имеются различия.

Мотор-компрессор ДХ.

Дополнительные фото и чертежи можно посмотреть тут: Мини — компрессор из холодильника (теория).

Компрессор поршневой, одноцилиндровый, с вертикально расположенной осью цилиндра. Возвратно-поступательное движение поршня в цилиндре осуществляется при помощи кривошипно-шатунного механизма. Смазка трущихся частей принудительная при помощи масляного насоса ротационного типа. Компрессор приводится в действие электродвигателем типа ДХМ. Двигатель однофазный, асинхронный переменного тока для работы от сети напряжением 220 или 127 В 50 Гц. Номинальная частота вращения ротора 1500 об/мин. Ротор напрессован непосредственно на коренной шейке коленчатого вала, статор закреплен в кожухе мотор-компрессора. Герметичные проходные контакты, через которые осуществляется электропитание двигателя, впаяны в одну из крышек кожура. Кожух мотор-компрессора ДХ цилиндрической формы состоит из трубы, закрытой с торцов наглухо приваренными к ней крышками. Подвеска кожуха мотор-компрессора пружинная.

Мотор-компрессор ФГ-1,100 (LS-08B). Дополнительные фото можно посмотреть тут: Устройство компрессора ФГ-0,100.

Компрессор поршневой, одноцилиндровый, с горизонтально расположенной осью цилиндра. Поршень перемещается в цилиндре при помощи кулисного механизма. Смазка трущихся частей осуществляется под действием центробежной силы через наклонно просверленное отверстие в нижнем торце коренной шейки вала. Двигатель компрессора однофазный, асинхронный переменного тока, для работы от сети напряжением 220 В. Номинальная частота вращения ротора 3000 об/мин. Статор закреплен на корпусе компрессора, который опирается на три пружины, симметрично расположенные в кожухе по окружности. Кожух мотор-компрессора ФГ-0,100 имеет форму горшка, закрытого приваренной крышкой. Три штампованные площадки на крышке, расположенные над опорами мотор-компрессора, ограничивают его перемещение внутри кожуха и препятствуют соскакиванию мотор-компрессора с пружин подвески.

Мотор-компрессор ФГ-0,100 (LS-08B) выгодно отличается от мотор-компрессора ДХ меньшим уровнем шума при работе, а также своей компактностью. Первому благоприятствует внутренняя подвеска, второму — применение высокооборотного двигателя.

Электродвигатель компрессора.

Статор является неподвижной частью двигателя. Он состоит из отдельных листов электротехнической стали, собранных в пакет. Вырезы, имеющиеся на внутреннем диаметре листа, необходимы для укладки обмоток. Обмоток две — рабочая и пусковая. Пусковая обмотка рассчитана на кратковременное включение лишь при запуске двигателя. Для повышения сопротивления ее выполняют из провода меньшего сечения, чем рабочую.

Для обмоток применяют провод марки ПЭВ-2 с высокопрочной лаковой (випифлекс) изоляцией, не растворяющейся под действием фреона и масла. Пропитывание обмоток лаками не допускается во избежание их растворения фреоном, а также отслаивания лака.

Витки обмоток в секциях скрепляют льняными нитками. Одни из концов рабочей и пусковой обмоток соединяют. Таким образом, обмотки имеют три выводных конца — рабочий, пусковой и общий конец обеих обмоток.

Читайте также: Примеры решения задач по компрессорам

Для выводных проводников используют многожильные провода в хлопчатобумажном чулке с вплетенной цветной ниткой для отличия концов обмоток.

Пускозащитное реле

Обычно пусковое и защитное реле совмещено в одном корпусе. Пусковые реле электромагнитные, с соленоидными катушками, которые включены в цепь рабочей обмотки двигателя. В нормальном состоянии контакты пускового реле разомкнуты и замыкаются в зависимости от перемещения сердечника в магнитном поле катушки. Защитные реле токовые, с нагревательными элементами и биметаллическими пластинками, деформирующимися от нагрева током и воздействующими на контакты. Контакты защитного реле размыкающие.

Пусковое реле работает следующим образом. При включении холодильного агрегата в сеть по рабочей обмотке двигателя и катушке пускового реле, а также через замкнутую цепь защитного реле проходит большой ток короткого замыкания (ротор неподвижен). В результате возникающего магнитного поля якорь втягивается в катушку соленоида и через пружинку увлекает стержень вместе с планкой контактов, которые замыкаются с контактами. При замыкании контактов включается пусковая обмотка двигателя, в результате чего начинается разгон ротора. При вращающемся роторе ток снижается, напряженность магнитного поля катушки слабеет, якорь опускается своей массой и контакты размыкаются. Двигатель работает с включенной в сеть рабочей обмоткой.

Принципиальное устройство и схема включения пускового реле:

1 – соленоидная катушка: 2 — якорь; 3 — подвижные контакты; 4 — неподвижные контакты; 5 — стержень; 6 – пружина; РО – рабочая обмотка; ПО — пусковая обмотка; ПР — пусковое реле

Работа защитного реле заключается в следующем. При включении холодильника в сеть, когда ротор двигателя еще неподвижен, по замкнутой цепи защитного реле через нагревательный элемент и биметаллическую пластинку проходит большой ток короткого замыкания. При нормальном запуске двигателя и быстром разгоне ротора биметаллическая пластинка не успевает нагреться настолько, чтобы ее изгиб привел к размыканию контактов. Цепь защитного реле остается также замкнутой и при нормальном рабочем токе. Однако в случае повышения тока нагрев биметаллической пластинки приведет к размыканию контактов и отключению двигателя от сети.

Принципиальное устройство и схема включения защитного реле:

1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — подвижный контакт; 4 — неподвижный контакт; РО — рабочая обмотка; ПО — пусковая обмотка; ЗР — защитное реле

Пускозащитное реле РТК-Х применяется для мотор-компрессоров с двигателями ДХМ-5 (220 В). По своим токовым характеристикам реле РТК-Х, взаимозаменяемо с реле РТП-1 для тех же двигателей. Оно монтируется на проходных контактах компрессорной установки. Пусковое реле РТХ-Х отличается от реле РТП-1 наличием двойного разрыва контактов, расположением контактов над соленоидной катушкой, а также меньшей массой сердечника, что способствует его бесшумному перемещению при размыкании контактов. Устройство защитного реле РТК-Х на 220 В отличается наличием дополнительного нагревательного элемента, благодаря чему улучшена защита пусковой обмотки двигателя и мотора в целом.

Устройство и схема включения пускозащитного реле РТК-Х: 1 — соленоидная катушка; 2 — якорь; 3 — стержень, 4 — планка подвижных контактов пускового реле; 5 — подвижные контакты; 6 — пружин а; 7 — неподвижные контакты пускового реле; 8 — нагревательный элемент цепи пусковой обмотки; 9 — нагревательный элемент цепи рабочей обмотки; 10 — подвижный контакт защитного реле; 11 — неподвижный контакт защитного реле; 12 — биметаллическая пластинка; 13 — упор контактодержателя; 14 – контактодержатель

Ниже фотографии реле РТК-Х выпуска времён СССР и Россия (чёрный и белый соответственно).

Далее фотографии реле РТП-1:

Определение выводных концов обмоток

Расположение проходных контактов на кожухе и присоединение к ним выводных концов рабочей и пусковой обмоток у разных мотор-компрессоров разное.

Присоединение выводных концов обмоток можно определить при помощи тестера (или батареи 3336Л и лампочки на 4,5 В). Выводные концы обмоток определяют включением какого-либо из перечисленных приборов попеременно между каждой парой проходных контактов. При этом стрелка прибора будет отклоняться по-разному, в зависимости от сопротивления обмотки, включенной между конкретной парой контактов. При проверке выводных концов лампочкой, будет заметна разница по ее яркости.

Практическая часть. Необходимо демонтировать реле. Нарисовать схему расположения контактов на корпусе агрегата и обозначить каждый контакт условным порядковым номером. Далее проверить попеременно каждую пару проходных контактов и записать результаты в табличку. К паре контактов, между которыми будет наибольшее сопротивление (наименьшая сила тока или наименьшая яркость лампочки), присоединены выводные концы рабочей и пусковой обмоток, следовательно, оставшийся контакт — общий выводной конец обеих обмоток. Определив присоединение общего выводного конца обмоток, следует сравнить результаты проверки между этим контактом и остальными. Наименьшее сопротивление (наибольшая сила тока, наибольшая яркость лампочки) будет указывать на контакт, к которому подключен выводной конец рабочей обмотки, и следовательно, к оставшемуся контакту — выводной конец пусковой обмотки.

В моём случае получилось следующее. Эксперимент проводил на трёх одинаковых мотор компрессорах типа ДХ. Обозначил контакты условными номерами 1, 2 и 3, сделал замеры и записал полученные результаты в табличку:

Из полученных данных следует, что к проходному контакту 2 присоединен общий конец обмоток, к контакту 3 — конец рабочей обмотки и к контакту 1 — конец пусковой обмотки:

Теперь по подробнее о третьем мотор компрессоре (из-за которого и пришлось написать эту статью). Ситуация была следующей. При подаче питания на компрессор, он включался. Поработав не продолжительное время, около тридцати – сорока секунд (максимум минуту) выключался. И включение происходило только после того как, что-то щёлкнет в пусковом реле. Если запустить компрессор и через десять секунд выключить, а после выключения включить повторно, то уже при старте двигателя в блоке реле произойдёт щелчок и мотор выключится, а далее всё заново. После того как были сделаны измерения сопротивления обмоток электродвигателя стало ясно что рабочая обмотка имеет коротко замкнутые витки. Щелчки которые раздавался при остановки двигателя и его старте, были срабатывания реле защиты.

Видео:Звук работы безмасляного компрессораСкачать

Звук работы безмасляного компрессора

Редуктор

Предназначен для уменьшения частоты вращения коленчатого вала компрессора при передаче на него крутящего момента с вала электродвигателя при одновременном увеличении крутящего момента на коленчатом валу.

Рис. 2.13. Редуктор мотор-компрессора

Редуктор выполнен в виде четырех косозубых цилиндрических шестерен. Шестерня (3) находится на валу электродвигателя и является ведущей, а шестерня (4) — на коленчатом валу компрессора и является ведомой. Шестерни (1) и (2) служат в качестве промежуточного звена и располагаются на отдельном эксцентриковом валу, ось которого находится ниже осей двух основных валов — электродвигателя и коленчатого вала компрессора. При этом с шестерней (3) входит в зацепление шестерня (2), а с шестерней (4) — шестерня (1).

Общее передаточное число редуктора — 3,9.

Передаточным числом редуктора называется отношение частоты ведущего вала к частоте ведомого, т.е. отношение частоты вращения вала электродвигателя к частоте вращения коленчатого вала компрессора.

Видео:Безмасляный воздушный компрессор от DENZEL 😎Скачать

Безмасляный воздушный компрессор от DENZEL 😎

Как работают компрессоры

В атмосферных автомобилях забор воздуха осуществляется по следующей схеме:

  • Опускаясь по цилиндру вниз, поршень создает разреженную среду.
  • В результате уменьшения давления воздух засасывается в камеру сгорания, где он впоследствии смешивается с топливом, сжимается поднимающимся поршнем и воспламеняется.

Здесь объем поступающего воздуха ограничивается рабочим объемом цилиндра, соответственно для моторов атмосферного типа единственным способом повышения мощности является увеличение внутреннего объема.

Двигатель с установленным компрессором

Установленный же компрессор позволяет использовать возможность воздуха сжиматься под внешним воздействием. Создаваемое его рабочими элементами давление заставляет цилиндры наполняться большим объемом воздуха, а горючая смесь, соответственно, получает больше кислорода. Добавляя к нему увеличенный объем топлива, удается получить больше энергии, которая при сгорании смеси толкает поршень и создает момент движения.

Статья в тему: Замена трансмиссионного масла на скутере – работаем без ошибок

Для эффективного нагнетания воздуха рабочие элементы компрессора (роторы или крыльчатка) должны вращаться быстрее коленчатого вала. Достичь этого позволяет установка шестерней разных размеров: ведущая звездочка больше, чем приводные шестерни нагнетателя. Благодаря этому удается достичь частоты вращения в 50 000 об/мин. и более.

Дополнительно увеличить объем подаваемого в цилиндры воздуха позволяет установка интеркулера. Этот агрегат охлаждает воздух, выходящий из компрессора, в результате чего газ дополнительно сжимается.

Средний прирост мощности на автомобилях, оборудованных компрессорами, в сравнении с атмосферными аналогами составляет 35-45%, кроме того, примерно на 30% возрастает крутящий момент.

Видео:Зачем винтовому компрессору нужен ресивер?Скачать

Зачем винтовому компрессору нужен ресивер?

Компрессор вагонов метро

Предназначен для непосредственного сжатия поступающего воздуха.

По устройству и принципу работы мотор-компрессор:

  • поршневой, с кривошипно-шатунным механизмом
  • с горизонтальным расположением цилиндров
  • двухцилиндровый
  • однорядный
  • воздушного (естественного) охлаждения
  • простого действия
  • одноступенчатого сжатия
  • низкого давления
  • малой производительности

Режим работы — повторно-кратковременный с продолжительностью включения до 50 %.

Производительностью называется количество сжатого до давления нагнетания воздуха, которое создает компрессор за единицу времени (л/мин).

Основные технические характеристики:

  • Давление нагнетания — не более 8,2 АТ
  • Производительность расчетная — 700 л/мин
  • Производительность (эффективная) — не менее 420 л/мин
  • Частота вращения коленчатого вала (номинальная) — 385 об/мин
  • Потребляемая мощность (мощность, затрачиваемая на вращение коленчатого вала компрессора) — 3,7 кВт
  • Диаметр цилиндра — 112 мм
  • Ход поршня — 92 мм
  • Направление вращения коленчатого вала (если смотреть со стороны электродвигателя) — по часовой стрелке
  • Масса мотор-компрессора в сборе — 313 кг
    , из них компрессор вместе с редуктором — 104
    кг
    .

Видео:Рассказ о компрессореСкачать

Рассказ о компрессоре

Преимущества компрессорного оборудования с ДВС

Возможность эксплуатации в автономном режиме — это важное, но далеко не единственное достоинство агрегатов с двигателем внутреннего сгорания. К примеру, нельзя не отметить:

  • Широчайший модельный ряд. На рынке представлены как бензиновые, так и дизельные установки, которые различаются по мощности, производительности, рабочему давлению и другим параметрам. Это позволяет приобрести подходящий вариант и для эксплуатации в частном гараже, и для профессионального использования.
  • Отличные эксплуатационные характеристики. Современные моторы для компрессоров с внутренним сгоранием отличает высокий моторесурс, нетребовательность к обслуживанию, минимальный уровень шума. Кроме того, все агрегаты комплектуются системой «легкий старт», что обеспечивает простой запуск двигателя даже при низкой температуре.
  • Нетребовательность к окружающим условиям. Значительная часть моделей на базе ДВС изначально разрабатывается с учетом эксплуатации в «поле». Их оснащают специальным корпусом, который защищает механизм от влаги, пыли, механических повреждений и прочих воздействий.

Читайте также: Советские компрессоры высокого давления

Отдельно стоит отметить экономичность современных двигателей внутреннего сгорания, которыми комплектуют компрессоры. При разработке новых моделей и зарубежные, и российские производители уделяют особое внимание снижению расхода топлива. К примеру, дизельные агрегаты мощностью 150-170 кВт, сжимающие до 20 000 л/мин воздуха, в среднем потребляют около 30 литров солярки.

Видео:Замена масла в компрессореСкачать

Замена масла в компрессоре

Устройство компрессора вагонов метро

Компрессор представляет собой картер (корпус) (рис. 2.14), в котором в двух шариковых подшипниках вращается двухколенный коленчатый вал (1). Подшипник (2) вмонтирован в кольцевую расточку торцевой стенки внутри картера, а подшипник (12) — в съемную крышку (8), которая крепится к картеру с торца через прессшпановую прокладку (10) четырьмя болтами и имеет прилив в виде втулки под болт подвески, а также штуцер, закрываемый пробкой (11), необходимый для вентиляции картера. Внутренние кольца подшипников (вместе с ведомой шестерней (4)) поджимаются упорными шайбами (5), а их болты (7) контрятся пластинчатыми шайбами (6). Внешнее кольцо подшипника (12) фиксируется в крышке (8) с помощью стопорного кольца (9).

Рис. 2.14. Коленчатый вал и опорные подшипники

К каждой шейке коленчатого вала крепится (рис. 2.15) шатун (21), имеющий разъемную головку (18), скрепляющуюся двумя шатунными болтами (15) через прокладки (16) и разбрызгиватель (17). Болты завинчиваются гайками (19) и стопорятся шплинтами (20). При сборке нижней головки используются направляющие штифты (22). Нижняя головка в сборе с заливкой (23) представляет собой нижний шатунный подшипник. В верхнюю головку шатуна (14) запрессовывается бронзовая втулка (13), являющаяся верхним шатунным подшипником для поршневого пальца, при помощи которого поршень соединяется с шатуном.

Рис. 2.15. Составные части шатуна

Каждый поршень (1) (рис. 2.16) с внешней стороны имеет четыре кольцевых канавки (ручья) для четырех поршневых колец. Из них ближайшие к днищу поршня предназначены для компрессионных колец (2), изготовленных из чугуна, а две других канавки используются для маслосъемных колец (3), выполненных из капрона или алюминиевого сплава. Одно из этих колец устанавливается сразу за двумя компрессионными, а второе маслосъемное кольцо размещается на юбке поршня. Требуемая упругость маслосъемных колец обеспечивается волновыми пружинными эспандерами (6), которые закладываются в канавки поршня под кольца. Подвижное соединение шатуна с поршнем обеспечивается установкой поршневого пальца (4), который фиксируется двумя стопорными кольцами (5).

Рис. 2.16. Поршень компрессора

Оба поршня размещаются в блоке цилиндров (4) (рис. 2.17), который крепится к картеру шестью шпильками М14 (1) через прессшпановую прокладку (2) с использованием двух направляющих штифтов (3). На шпильки навинчиваются гайки (6) с пружинными шайбами (5).

Блок цилиндров завершается крышкой клапанной коробки (17), между нею и блоком цилиндров размещается сама клапанная коробка (9). Крепление крышки и клапанной коробки к блоку цилиндров производится шестью шпильками М16 (7) через уплотнительные прокладки (8) и (15), изготовленные из прессшпана или паронита с использованием направляющего штифта (16). На шпильки навинчиваются гайки (19) с пружинными шайбами (18).

Крышка клапанной коробки изнутри разделена на две обособленных полости — всасывающую, находящуюся снизу и заканчивающуюся снаружи входным штуцером (А) и нагнетательную, находящуюся сверху и заканчивающуюся снаружи выходным штуцером (В). Крышка и блок цилиндров с внешней стороны снабжены ребрами для усиления теплоотдачи.

При вращении коленчатого вала шатунная шейка совершает круговое движение, так же, как и нижняя головка шатуна. При этом верхняя головка шатуна и поршни совершают возвратно-поступательное движение. Движение, которое совершает шатун в целом, называется плоским.

Видео:Компрессор для аэрографаСкачать

Компрессор для аэрографа

Компрессор. Принцип работы

Вчера Дима рассказал нам о том, каким должен быть дрифткар. Но я хочу дополнить его материал вот чем — поскольку большинство дрифтовых автомобилей использует компрессоры\турбины для получения большей мощности, я посчитал нужным рассказать вам о принципах работы компрессоров, их типах и о том, как они устроены. С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше. Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. В этой статье мы объясним, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува). Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» — его официального названия. Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя. В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу. Основы компрессора

: Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага: Поршень перемещается вниз Это создает разрежение Воздух под атмосферным давлением засасывается в камеру сгорания Как только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса. Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха. Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.
Центробежный компрессор
В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов. Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания. Далее мы рассмотрим различные типы компрессоров.
Роторный компрессор
Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках. Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя. Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров. Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам: Они существенно увеличивают вес транспортного средства. Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.
Рис.3 Двухвинтовой компрессор
Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство. Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.
Рис.4 Центробежный компрессор
Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха. Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля. Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты, состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей. Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.
Преимущества компрессора
Самое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов. Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании. Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя. Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя. Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением. Далее рассмотрим некоторые недостатки компрессоров.
Недостатки компрессоров
: Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса. Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.

Читайте также: Масло для компрессора калибр кмк 2100 50у

Теперь у нас есть Telegram-канал. Подписывайтесь, чтобы быть в курсе последних новостей!


🌟 Видео

Компрессор HYC 1824S обзорчик и модернизацияСкачать

Компрессор HYC 1824S обзорчик и модернизация

А вы используете компрессор? Как выбирали подходящую модель? Делитесь в комментарияхСкачать

А вы используете компрессор? Как выбирали подходящую модель? Делитесь в комментариях

Винтовая пара (винтовой блок) компрессора: что это и принцип работы. Компрессор ABAC SPINN 15-10.Скачать

Винтовая пара (винтовой блок) компрессора: что это и принцип работы. Компрессор ABAC SPINN 15-10.

Компрессор ременной SIGMA (7044121)Скачать

Компрессор ременной SIGMA (7044121)

Как выбрать компрессор?Скачать

Как выбрать компрессор?

Винтовой компрессор Hansmann RS 7.5Скачать

Винтовой компрессор Hansmann RS 7.5

Компрессор СТАЛЬ КСТ-24Скачать

Компрессор СТАЛЬ КСТ-24

ОБЫЧНЫМ КОМПРЕССОРОМ больше не пользуюсь! Безмасляный компрессор Sturm AC936100OLE!Скачать

ОБЫЧНЫМ КОМПРЕССОРОМ больше не пользуюсь! Безмасляный компрессор Sturm AC936100OLE!

Безмасляный компрессор DENZEL 🔧Скачать

Безмасляный компрессор DENZEL 🔧
Поделиться или сохранить к себе:
Технарь знаток