Расчет сечения алюминиевой шины по длительно допустимым токовым нагрузкам проводят в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году — выбираются допустимые длительные токи для неизолированных проводов и шин. Предельно допустимые длительные токи для алюминиевых шин прямоугольного сечения для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице:
- Какой длительно допустимый предельный ток для алюминиевой шины?
- И 1.08-08 Инструкция по проектированию и монтажу контактных соединений шин между собой и с выводами электротехнических устройств (выдержки)
- 1. РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ
- 2. СОЕДИНЕНИЯ ШИН С ВЫВОДАМИ
- 3. СОЕДИНЕНИЯ ГИБКИХ ШИН МЕЖДУ СОБОЙ И С ВЫВОДАМИ В ОТКРЫТЫХ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВАХ
- 4. ПРИЛОЖЕНИЕ 1: БОЛТЫ И ГАЙКИ
- 5. ПРИЛОЖЕНИЕ 2: ШАЙБЫ
- 6. ПРИЛОЖЕНИЕ 9: ВЫВОДЫ КОНТАКТНЫХ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ ПЛОСКИЕ И ШТЫРЕВЫЕ
- 7. ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШИН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ
- 1. РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ
- 1. Технология выполнения соединений
- Рис. 1. Разборные контактные соединения
- Таблица 1
- 2. Подготовка к сборке разборных соединений
- Таблица 2
- Длина болтов для соединения пакетов шин:
- ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.
- Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
- Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
- Особенности и применение медных шин
- Перфорация медной и алюминиевой шины
- Особенности подбора медных шин
- Проверка шин на термическую устойчивость
- Достоинства медных шин
- Гибка медной и алюминиевой шины
- Допустимые нагрузки по току на медные шины
- Допустимый длительный ток для шин прямоугольного сечения
- Способы расчёта сечения кабелей
- Расчёт сечения по нагреву
- Расчёт сечения по допустимым потерям напряжения
- Рубка медной и алюминиевой шины
- Таблица сечения кабеля по мощности и току
- 🎦 Видео
Видео:Медные шины и алюминиевая шина АД31Скачать
Какой длительно допустимый предельный ток для алюминиевой шины?
Сечение шины, мм | Постоянный ток, А | Переменный ток, А |
---|---|---|
Длительно допустимый ток для шины алюминиевой 15×3 | 165 | 165 |
Длительно допустимый ток для шины алюминиевой 20×3 | 215 | 215 |
Длительно допустимый ток для шины алюминиевой 25×3 | 265 | 265 |
Длительно допустимый ток для шины алюминиевой 30×4 | 370 | 365 |
Длительно допустимый ток для шины алюминиевой 40×4 | 480 | 480 |
Длительно допустимый ток для шины алюминиевой 40×5 | 545 | 540 |
Длительно допустимый ток для шины алюминиевой 50×5 | 670 | 665 |
Длительно допустимый ток для шины алюминиевой 50×6 | 745 | 740 |
Длительно допустимый ток для шины алюминиевой 60×6 | 880 | 870 |
Длительно допустимый ток для шины алюминиевой 60×8 | 1040 | 1025 |
Длительно допустимый ток для шины алюминиевой 60×10 | 1180 | 1155 |
Длительно допустимый ток для шины алюминиевой 80×6 | 1170 | 1150 |
Длительно допустимый ток для шины алюминиевой 80×8 | 1355 | 1320 |
Длительно допустимый ток для шины алюминиевой 80×10 | 1540 | 1480 |
Длительно допустимый ток для шины алюминиевой 100×6 | 1455 | 1425 |
Длительно допустимый ток для шины алюминиевой 100×8 | 1690 | 1625 |
Длительно допустимый ток для шины алюминиевой 100×10 | 1910 | 1820 |
Длительно допустимый ток для шины алюминиевой 120×8 | 2040 | 1900 |
Длительно допустимый ток для шины алюминиевой 120×10 | 2300 | 2070 |
Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:
В Невской Алюминиевой Компании Вы можете купить алюминий со склада в Петербурге или заказать доставку по России.
Cклад Невской Алюминиевой Компании расположен по адресу Лиговский пр. д. 266, недалеко от станции метро «Московские Ворота», рядом грузовая магистраль — Витебский проспект, выезды на ЗСД и КАД.
Документы на погрузку выдаются на месте.
Видео:Гибка медной и алюминиевой шины ШГ-150 NEO (КВТ)Скачать
И 1.08-08 Инструкция по проектированию и монтажу контактных соединений шин между собой и с выводами электротехнических устройств (выдержки)
1. РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ
2. СОЕДИНЕНИЯ ШИН С ВЫВОДАМИ
3. СОЕДИНЕНИЯ ГИБКИХ ШИН МЕЖДУ СОБОЙ И С ВЫВОДАМИ В ОТКРЫТЫХ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВАХ
4. ПРИЛОЖЕНИЕ 1: БОЛТЫ И ГАЙКИ
5. ПРИЛОЖЕНИЕ 2: ШАЙБЫ
6. ПРИЛОЖЕНИЕ 9: ВЫВОДЫ КОНТАКТНЫХ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ ПЛОСКИЕ И ШТЫРЕВЫЕ
7. ДОПУСТИМЫЙ ДЛИТЕЛЬНЫЙ ТОК ДЛЯ ШИН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ
Видео:Шина алюминиевая, электротехнического назначения ГОСТ 15176-89Скачать
1. РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ
1. Технология выполнения соединений
1.1. Разборные (болтовые) контактные соединения в зависимости от материала соединяемых шин и климатических факторов внешней среды подразделяются на соединения:
а) без средств стабилизации электротехнического сопротивления;
б) со средствами стабилизации электрического сопротивления.
1.2. Контактные соединения шин из материалов медь-медь, алюминиевый сплав алюминиевый сплав, медь-сталь, сталь-сталь для групп А и Б, а также из материалов алюминиевый сплав-медь и алюминиевый сплав-сталь для группы А не требуют применения средств стабилизации электрического сопротивления. Соединения выполняются непосредственно с помощью стальных крепежных деталей (рис.1 а).
Рис. 1. Разборные контактные соединения
1 — шина медная, из алюминиевого сплава или стали; 2 — алюминиевая шина; 3 — стальная шайба; 4 — тарельчатая пружина; 5 — стальной болт; 6 — стальная гайка; 7 — болт из цветного металла; 8 — гайка из цветного металла; 9 — шайба из цветного металла; 10 — металлопокрытие; 11 — шина медная, алюминиевая, из алюминиевого сплава или стали; 12 — медно-алюминиевая пластина; 13 — пластина из алюминиевого сплава; 14 — шина из алюминиевого сплава
1.3. Контактные соединения шин из материалов алюминий-алюминий, алюминиевый сплав-алюминий для групп А и Б, а также из материалов алюминий-медь и алюминий-сталь для группы А следует выполнять с помощью одного из средств стабилизации сопротивления:
а) тарельчатых пружин по ГОСТ 3057 (рис. 1 б);
б) крепежных изделий из меди или ее сплава (рис. 1 в);
в) защитных металлических покрытий по ГОСТ 21.484, наносимых на рабочие поверхности шин или электропроводящей смазкой типа ЭПС-98 (рис 1 г);
г) переходных медно-алюминиевых пластин по ГОСТ 19357 (рис. 1 д);
д) переходных пластин из алюминиевого сплава (рис. 1 е).
1.4. Для группы Б контактные соединения шин из материалов алюминиевый сплав-медь, алюминиевый сплав-сталь, следует выполнять как показано на рис. 1 д, е; из материалов алюминий-медь, алюминий-сталь — как показано на рис. 1 б, в, д, е.
Рабочие поверхности шин и пластин из алюминия и алюминиевого сплава должны иметь защитные металлопокрытия.
1.5. Пластины из алюминиевого сплава и алюминиевые части медно-алюминиевых пластин следует соединять с алюминиевыми шинами сваркой. Разборные соединения переходных пластин с медными шинами необходимо выполнять с помощью стальных крепежных деталей.
1.6. Расположение и диаметр отверстий для соединения шин шириной до 120 мм приведены в табл. 1.
Зависимость диаметра отверстия в шинах от диаметра стягивающих болтов следующая:
Диаметр отверстия в шинах, мм
Таблица 1
* Примечание только при соединении пакетов шин
1.7. Контактные участки шин шириной 60 мм и более, имеющие два отверстия в поперечном ряду, рекомендуется выполнять с продольными разрезами. Ширина разреза зависит от способа его выполнения и должна быть не более 5 мм.
2. Подготовка к сборке разборных соединений
2.1. Подготовка шин для разборного соединения состоит из следующих операций: выполнение отверстий под болты, обработка контактных поверхностей и, при необходимости, нанесение металлопокрытия.
2.2. Расположение и размеры отверстий под болты должны соответствовать указанным в п. 1.6.
2.3. При массовой заготовке шин рекомендуется вырубку отверстий производить на прессах. Одновременная вырубка нескольких отверстий
может быть осуществлена с помощью специальных приспособлений. При вырубке отверстий с применением упора и кондукторов разметку производить не следует.
2.4. Длину болтов для соединения пакета шин необходимо выбирать по табл. 2. На болтах после сборки и затяжки соединений должно оставаться не менее двух ниток свободной резьбы.
Таблица 2
Длина болтов для соединения пакетов шин:
Толщина пакета шин в соединении, мм
алюминиевых с алюминиевыми
алюминиевых с медными или с шинами из алюминиевого сплава
2.5. Контактные поверхности шин необходимо обрабатывать в следующем порядке: удалить бензином, ацетоном или уайт-спиритом грязь и консервирующую смазку, у сильно загрязненных шин гибкой ошиновки кроме очистки внешних повивов после расплетки очистить внутренние повивы; выправить и обработать под линейку на шинофрезерном станке (при наличии вмятин, раковин и неровностей); удалить посторонние пленки ручным электроинструментом со специальным зачистным кругом, или другими насадками и приспособлениями для механизированных инструментов. Зачистку шин в мастерских электромонтажных заготовок рекомендуется производить на станке 3Ш-120. При зачистке алюминия применять шлифовальные круги не допускается. Не следует применять напильники и стальные щетки для одновременной обработки шин из различных материалов.
2.6. Для удаления окисных пленок рабочие поверхности следует зачищать. По окончании зачистки шин из алюминия или алюминиевого сплава на их поверхность необходимо нанести нейтральную смазку (вазелин КВЗ, ГОСТ 15975; ЦИАТИМ-221, ГОСТ 9433; ЦИАТИМ-201, ГОСТ 6267; электропроводящую смазку ЭПС-98 ТУ 0254-002-47926093-2001 или другие смазки с аналогичными свойствами). Рекомендуемое время между зачисткой и смазкой — не более 1 ч.
2.7. Способы и технология нанесения металлопокрытий на контактные поверхности шин даны в Приложении 8.
2.8. Поверхности, имеющие защитные металлические покрытия, в случае загрязнения перед сборкой следует промыть органическими растворителями (бензином, уайт-спиритом и т.д.).
Луженые медные желобки, предназначенные для закрепления медных шин в петлевых зажимах, необходимо промывать растворителем и покрывать слоем нейтральной смазки (вазелин КВЗ, ГОСТ 15975; ЦИАТИМ-201, ГОСТ 6267; ЦИАТИМ-221, ГОСТ 9433; электропроводящую смазку ЭПС-98 ТУ 0254-002-47926093-2001 или другими смазками с аналогичными свойствами). Зачищать такие желобки наждачной бумагой не следует.
2.9. Допускается наносить металлопокрытия на отрезки шин (пластин), которые затем приваривают к шинам на монтаже. Длина покрываемого отрезка шины (пластины) в зависимости от длины этого отрезка должна быть:
Видео:Установка нулевой шиныСкачать
ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.
Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.
При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
Номинальное сечение,мм 2 | Сечение (алюминий/сталь), мм 2 | М | А и АКП | М | А и АКП | ||
вне помещений | внутри помещений | ||||||
10 | 10/1,8 | 84 | 53 | 95 | — | 60 | — |
16 | 16/2,7 | 111 | 79 | 133 | 105 | 102 | 75 |
25 | 25/4,2 | 142 | 109 | 183 | 136 | 137 | 106 |
35 | 35/6,2 | 175 | 135 | 223 | 170 | 173 | 130 |
50 | 50/8 | 210 | 165 | 275 | 215 | 219 | 165 |
70 | 70/11 | 265 | 210 | 337 | 265 | 268 | 210 |
95 | 95/16 | 330 | 260 | 422 | 320 | 341 | 255 |
120/19 | 390 | 313 | 485 | 375 | 395 | 300 | |
120 | 120/27 | 375 | — | ||||
150/19 | 450 | 365 | 570 | 440 | 465 | 355 | |
150 | 150/24 | 450 | 365 | ||||
150/34 | 450 | — | |||||
185/24 | 520 | 430 | 650 | 500 | 540 | 410 | |
185 | 185/29 | 510 | 425 | ||||
185/43 | 515 | — | |||||
240/32 | 605 | 505 | 760 | 590 | 685 | 490 | |
240 | 240/39 | 610 | 505 | ||||
240/56 | 610 | — | |||||
300/39 | 710 | 600 | 880 | 680 | 740 | 570 | |
300 | 300/48 | 690 | 585 | ||||
300/66 | 680 | — | |||||
330 | 330/27 | 730 | — | — | — | — | — |
400/22 | 830 | 713 | 1050 | 815 | 895 | 690 | |
400 | 400/51 | 825 | 705 | ||||
400/64 | 860 | — | |||||
500/27 | 960 | 830 | — | 980 | — | 820 | |
500 | 500/64 | 945 | 815 | ||||
600 | 600/72 | 1050 | 920 | — | 1100 | — | 955 |
700 | 700/86 | 1180 | 1040 | — | — | — | — |
Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
Диаметр, мм | |||||||||||
медные | алюминиевые | Внутренний и наружный диаметры, мм | Ток, А | Внутренний и наружный диаметры, мм | Ток, А | Условный проход, мм | Толщина стенки, мм | Наружный диаметр, мм | без разреза | с продольным разрезом | |
6 | 155/155 | 120/120 | 12/15 | 340 | 13/16 | 295 | 8 | 2,8 | 13,5 | 75 | — |
7 | 195/195 | 150/150 | 14/18 | 460 | 17/20 | 345 | 10 | 2,8 | 17,0 | 90 | — |
8 | 235/235 | 180/180 | 16/20 | 505 | 18/22 | 425 | 15 | 3,2 | 21.3 | 118 | — |
10 | 320/320 | 245/245 | 18/22 | 555 | 27/30 | 500 | 20 | 3,2 | 26,8 | 145 | — |
12 | 415/415 | 320/320 | 20/24 | 600 | 26/30 | 575 | 25 | 4,0 | 33,5 | 180 | — |
14 | 505/505 | 390/390 | 22/26 | 650 | 25/30 | 640 | 32 | 4,0 | 42,3 | 220 | — |
15 | 565/565 | 435/435 | 25/30 | 830 | 36/40 | 765 | 40 | 4,0 | 48,0 | 255 | — |
16 | 610/615 | 475/475 | 29/34 | 925 | 35/40 | 850 | 50 | 4,5 | 60,0 | 320 | — |
18 | 720/725 | 560/560 | 35/40 | 1100 | 40/45 | 935 | 65 | 4,5 | 75,5 | 390 | — |
19 | 780/785 | 605/610 | 40/45 | 1200 | 45/50 | 1040 | 80 | 4,5 | 88,5 | 455 | — |
20 | 835/840 | 650/655 | 45/50 | 1330 | 50/55 | 1150 | 100 | 5,0 | 114 | 670 | 770 |
21 | 900/905 | 695/700 | 49/55 | 1580 | 54/60 | 1340 | 125 | 5,5 | 140 | 800 | 890 |
22 | 955/965 | 740/745 | 53/60 | 1860 | 64/70 | 1545 | 150 | 5,5 | 165 | 900 | 1000 |
25 | 1140/1165 | 885/900 | 62/70 | 2295 | 74/80 | 1770 | — | — | — | — | — |
27 | 1270/1290 | 980/1000 | 72/80 | 2610 | 72/80 | 2035 | — | — | — | — | — |
28 | 1325/1360 | 1025/1050 | 75/85 | 3070 | 75/85 | 2400 | — | — | — | — | — |
30 | 1450/1490 | 1120/1155 | 90/95 | 2460 | 90/95 | 1925 | — | — | — | — | — |
35 | 1770/1865 | 1370/1450 | 95/100 | 3060 | 90/100 | 2840 | — | — | — | — | — |
38 | 1960/2100 | 1510/1620 | — | — | — | — | — | — | — | — | — |
40 | 2080/2260 | 1610/1750 | — | — | — | — | — | — | — | — | — |
42 | 2200/2430 | 1700/1870 | — | — | — | — | — | — | — | — | — |
45 | 2380/2670 | 1850/2060 | — | — | — | — | — | — | — | — | — |
Видео:Вот ЧЕМ надо ЧЕРНИТЬ ШИНЫ (качественно, безопасно, дешево)Скачать
Особенности и применение медных шин
Для производства электротехнических шин используются полосы меди высшей степени очистки от примесей. Также для изготовления продукции применяются проводники с круглым сечением, переплетенные между собой. Основное применение шин – производство комплектующих для электрооборудования и изготовление электротехнических деталей.
Пользуются спросом следующие виды медных шин:
- бескислородные изделия практически не содержат посторонних примесей, хорошо выдерживают воздействие температуры, свариваются и поддаются пайке;
- шины М1 и М2 содержат кислород, отличаются высокой износостойкостью и длительным сроком эксплуатации;
- твердые шины ШМТ изготавливаются из стандартного медного сплава, применяются при монтаже прочного и надежного шинопровода;
- мягкие шины ШММ используются в различных сферах деятельности, включая металлургию и авиастроение.
Кроме указанных сортов материала, на рынке пользуются спросом и другие виды электротехнических медных шин. Универсальная в использовании продукция не подвергается коррозии и окислению, хорошо обрабатывается, обладает конструктивной универсальностью.
Видео:Nexen N'Blue HD Plus – обзорСкачать
Перфорация медной и алюминиевой шины
Для соединения шин в шинопроводе между собой, а также для подключения питающих и отходящих линий в шине размечают и перфорируют отверстия соответствующего диаметра с применением шинного перфоратора. Расстояние между отверстиями рассчитывается таким образом, чтобы наконечники присоединений не касались друг друга и было удобно выполнять присоединение, а впоследствии, во время эксплуатации электроустановки, протяжку болтовых соединений.
Соединение шин и подключение кабелей выполняется с помощью болтов и гаек исключительно с тарельчатыми шайбами. Применение шайб типа «гровер» крайне не рекомендуется, поскольку при сильном нагреве (например КЗ), гровер теряет свои пружинящие свойства, вследствие чего болтовое соединение становится ненадежным, переходное сопротивление т в месте присоединения увеличивается.
Видео:5 ошибок о РЕМОНТНЫХ ШИПАХСкачать
Особенности подбора медных шин
Визуально электротехническая шина из меди имеет форму бруска с сечением в виде прямоугольника. Можно сравнить изделие с листом металла увеличенной длины и толщины. Стандартные размеры ширины бруска составляют от 8 до 250 мм. Минимальная и максимальная толщина равняется 1,2 и 80 мм соответственно.
При выборе электротехнических шин из медных сплавов учитываются следующие критерии:
- условия эксплуатации продукции, в зависимости от предельной нагрузки по току выбираются изделия с разными соотношениями толщины и ширины;
- поставка продукции осуществляется в бухтах и отрезках, прессованном и тянутом состоянии. Выбор по данным параметрам осуществляется покупателем на основании собственных предпочтений и особенностей монтажа;
- максимально допустимая температура нагрева медного шинопровода составляет 70 градусов. При выборе толщины изделия следует учитывать этот показатель, а также температуру окружающей среды. В таблице допустимых нагрузок приведены данные из расчета температуры воздуха в 25 градусов;
- при наличии финансовых возможностей, лучше выбирать шинопроводы с запасом по токовой нагрузке, с целью избежать выхода изделий из строя при скачках напряжения и коротких замыканиях.
Надежность в эксплуатации медных шин, выполненных в соответствии с требованиями нормативных документов, подтверждена на практике. Качественный материал без посторонних примесей полностью соответствует заявленным характеристикам.
Видео:КВТ | Обзор инструмента для изготовления изделий из медной \ алюминиевой шины.Скачать
Проверка шин на термическую устойчивость
2.1. Определяем тепловой импульс, который выделяется при токе короткого замыкания по выражению 3.85 [Л2, с.190]:
- Iп.0 = 9,8 кА – начальное действующее значение тока КЗ на шинах 10 кВ.
- Та – постоянная времени затухания апериодической составляющей тока короткого замыкания. Для ориентировочных расчетов значение Та определяем по таблице 3.8 [Л2, с.150]. Для трансформатора мощность 16 МВА, принимаем Та = 0,04. Если же вы хотите более точно рассчитать значение Та, можете воспользоваться формулами, представленными в пункте 6.1.4 ГОСТ Р 52736-2007.
2.1.1. Определяем полное время отключения КЗ по выражению 3.88 [Л2, с.191] и согласно пункта 4.1.5 ГОСТ Р 52736-2007:
tоткл.= tр.з.+ tо.в=0,1+0,07=0,18 сек.
- tр.з. – время действия основной защиты трансформатора, равное 0,1 сек (АПВ – не предусмотрено).
- tо.в – полное время отключения выключателя выбирается из каталога, равное 0,07 сек.
2.2. Определяем минимальное сечение шин по термической стойкости при КЗ по выражению 3.90 [Л2, с.191]:
где: С – функция, значения которой приведены в таблице 3.14. Для алюминиевых шин С = 91.
Как мы видим ранее принята алюминиевая шина сечением 80х10 мм – термически устойчива.
Видео:ШИНЫ ГРАНИТ из СССРСкачать
Достоинства медных шин
Медные электротехнические шины по стоимости дороже алюминиевых аналогов, но выигрывают по основным техническим характеристикам. Приобретение шинопроводов из меди выгодно по следующим причинам:
- за счет высокой теплопроводности медная шина выдержит существенно большую нагрузку по току по сравнению с алюминиевыми аналогами;
- при передаче энергии потери на медном шинопроводе сводятся к минимуму;
- эластичность, устойчивость к растяжению и другим механическим нагрузкам без потери технических характеристик – важное достоинство продукции;
- за счет устойчивости к воздействию перепадов температуры и влажности, способности выдерживать большое напряжение, медная шина является экономически более выгодным приобретением, чем алюминиевый аналог.
Объективные достоинства продукции позволяют собирать на основе медных электротехнических шин распределительные установки с компактными габаритами. Использование подобных изделий становится все более востребованным и актуальным.
Видео:ДАТА ВЫПУСКА ШИН /// как смотретьСкачать
Гибка медной и алюминиевой шины
Гибка шины производится на специализированных гидравлических гибочных станках. Предварительно на шину наносится разметка, позволяющая точно позиционировать в станке место гиба. В процессе гибки контролируется угол гиба, что позволяет точно воспроизводить шины по заданному размеру.
Угол гиба может быть различным и обусловлен лишь местами соединений и подключений шин, а также удобством сборки и последующего обслуживания.
Для изменения направления плоскости шины применяется продольное скручивание на 90º.
Специалисты нашего Производства с удовольствием выполнят гибку шин по Вашим чертежам и заданиям.
Видео:Что внутри китайской и европейской шины? Пилим - и сравниваем!Скачать
Допустимые нагрузки по току на медные шины
При выборе шинопровода покупателю не требуется рассчитывать параметры изделия. Достаточно знать максимально допустимый ток в системе, постоянный или переменный. ПО приведенной ниже таблице можно подобрать подходящее сечение электротехнической шины и купить продукцию в необходимом объеме.
Сечение шинопровода | Постоянный ток, А | Переменный ток, А |
Медная электротехническая шина 15×3 | 210 | 210 |
Медная электротехническая шина 20×3 | 275 | 275 |
Медная электротехническая шина 25×3 | 340 | 340 |
Медная электротехническая шина 30×4 | 475 | 475 |
Медная электротехническая шина 40×4 | 625 | 625 |
Медная электротехническая шина 40×5 | 705 | 700 |
Медная электротехническая шина 50×5 | 870 | 860 |
Медная электротехническая шина 50×6 | 960 | 955 |
Медная электротехническая шина 60×6 | 1145 | 1125 |
Медная электротехническая шина 60×8 | 1345 | 1320 |
Медная электротехническая шина 60×10 | 1525 | 1475 |
Медная электротехническая шина 80×6 | 1510 | 1480 |
Медная электротехническая шина 80×8 | 1755 | 1690 |
Медная электротехническая шина 80×10 | 1990 | 1900 |
Медная электротехническая шина 100×6 | 1875 | 1810 |
Медная электротехническая шина 100×8 | 2180 | 2080 |
Медная электротехническая шина 100×10 | 2470 | 2310 |
Медная электротехническая шина 120×8 | 2600 | 2400 |
Медная электротехническая шина 120×10 | 2950 | 2650 |
Компания НТЦМ предлагает купить электротехнические медные шины в большом ассортименте. На складе предприятия представлена продукция в различных типоразмерах. Отличные технические характеристики, конкурентоспособная стоимость, сжатые сроки доставки изделий в любой регион страны – основные преимущества заказа электротехнических шинопроводов в НТЦМ.
Видео:Забортовка шин низкого давления и немного о бедлокахСкачать
Допустимый длительный ток для шин прямоугольного сечения
Размеры, мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
Ток*, А, при количестве полос на полюс или фазу | Размеры, мм | Ток*, А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15 х 3 | 210 | 165 | _ | 16×2,5 | 55/70 | |||||
20 х 3 | 275 | — | — | — | 215 | — | — | — | 20×2,5 | 60/90 |
25 х 3 | 340 | — | — | — | 265 | — | — | — | 25 х 2,5 | 75/110 |
30 х 4 | 475 | — | — | — | 365/370 | — | — | — | 20 х 3 | 65/100 |
40 х 4 | 625 | -/1090 | — | — | 480 | -/855 | — | — | 25 х 3 | 80/120 |
40х 5 | 700/705 | -/1250 | — | — | 540/545 | -/965 | — | — | 30х 3 | 95/140 |
50х 5 | 860/870 | -/1525 | -/1895 | — | 665/670 | -/1180 | -/1470 | — | 40×3 | 125/190 |
50×6 | 955/960 | -/1700 | -/2145 | — | 740/745 | -/1315 | -/1655 | — | 50×3 | 155/230″ |
60×6 | 1125/1145 | 1740/1990 | 2240/2495 | — | 870/880 | 1350/1555 | 1720/1940 | — | 60 х 3 | 185/280 |
80×6 | 1480/1510 | 2110/2630 | 2720/3220 | — | 1150/1170 | 1630/2055 | 2100/2460 | — | 70 х 3 | 215/320 |
100×6 | 1810/1875 | 2470/3245 | 3170/3940 | — | 1425/1455 | 1935/2515 | 2500/3040 | — | 75 х 3 | 230/345 |
60 х 8 | 1320/1345 | 2160/2485 | 2790/3020 | — | 1025/1040 | 1680/1840 | 2180/2330 | — | 80 х 3 | 245/365 |
80 х 8 | 1690/1755 | 2620/3095 | 3370/3850 | — | 1320/1355 | 2040/2400 | 2620/2975 | — | 90×3 | 275/410 |
100×8 | 2080/2180 | 3060/3810 | 3930/4690 | — | 1625/1690 | 2390/2945 | 3050/3620 | — | 100×3 | 305/460 |
120×8 | 2400/2600 | 3400/4400- | 4340/5600 | — | 1900/2040 | 2650/3350 | 3380/4250 | — | 20×4 | 70/115 |
60 х 10 | 1475/1525 | 2560/2725 | 3300/3530 | — | 1155/1180 | 2010/2110 | 2650/2720 | — | 22 х 4 | 75/125 |
80 х 10 | 1900/1990 | 3100/3510 | 3990/4450 | — | 1480/1540 | 2410/2735 | 3100/3440 | — | 25 х 4 | 85/140 |
100 х 10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30×4 | 100/165 |
120 х 10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40×4 | 130/220 |
50×4 | 165/270 | |||||||||
60×4 | 195/325 | |||||||||
70×4 | 225/375 | |||||||||
80×4 | 260/430 | |||||||||
90х 4 | 290/480 | |||||||||
100×4 | 325/535 |
*В числителе приведены значения переменного тока, в знаменателе — постоянного.
Видео:Неизвестный Китай: достойные бренды шин, о которых вы не слышалиСкачать
Способы расчёта сечения кабелей
Есть два способа определения необходимого сечения кабеля. При расчёте необходимо применять оба метода и использовать большую из полученных величин.
Расчёт сечения по нагреву
Во время протекания электрического тока по кабелю он греется. Допустимая температура нагрева и сечение провода зависят от типа изоляции и способов прокладки. При недостаточном сечении токопроводящей жилы она нагревается до недопустимой температуры, что может привести к разрушению изоляции, короткому замыканию и пожару.
Совет! Для тщательного расчёта необходимо использовать специальные таблицы, программы или онлайн-калькуляторы, но для большинства практических задач допускается применить таблицу, которую можно найти в ПУЭ, п. 1.3.10.
Расчёт сечения по допустимым потерям напряжения
Токопроводящая жила в проводе обладает сопротивлением и при прохождении по ней тока, согласно закону Ома, происходит падение напряжения. Величина этого падения растёт при уменьшении сечения кабеля и увеличении его длины.
При прокладке кабеля большой длины его сечение, необходимое для уменьшения потерь, может многократно превышать величину, выбранную по допустимому нагреву. Для расчёта используются специальные формулы, программы и онлайн-калькуляторы.
Совет! При подключении устройств, работающих на пониженном напряжении, блок питания располагается как можно ближе к аппарату.
Видео:Обновленный обзор нулевых шин, клеммных колодок в корпусе и кросс-модулейСкачать
Рубка медной и алюминиевой шины
Обрезка шин по требуемому размеру также осуществляется с помощью специализированного гидравлического оборудования — гильотин, называемых также шинорезами.
Перед резкой шина размечается и фиксируется на станине гильотины. Рез получается ровным и практически не требует дополнительной обработки.
Для заказа резки шин Вам необходимо указать их сечение и требуемые размеры изделий.
Видео:Китайские шины Sailun. Разбор всех моделей брендаСкачать
Таблица сечения кабеля по мощности и току
Обычно для практических нужд достаточно использовать таблицу сечения кабеля, которая находится в Правилах Устройства Электроустановок в таблицах 1.3.4 и 1.3.5.
Также можно использовать следующие таблицы.
Для гибкого шнура и кабеля с медной жилой (ПВС, ШВВП, КГ)
Для силового кабеля с медной жилой (ВВГ)
Для силового кабеля с алюминиевой жилой (АВВГ)
В этих таблицах указаны необходимые сечения алюминиевых и медных кабелей для различных токовых нагрузок и условий прокладки. Тип изоляции — резиновая и виниловая, аналогичен большинству видов изоляционных материалов.
Выбор производится по номинальному току нагрузки. Если ток неизвестен, то он вычисляется исходя из мощности устройства, количества фаз и напряжения сети.
🎦 Видео
УЗНАВ ЭТОТ СЕКРЕТ ТЫ БОЛЬШЕ НИКОГДА НЕ ПРИМЕНИШЬ ГЕРМЕТИК ШИНСкачать
КИТАЙСКИЕ ШИНЫ /// которые можно братьСкачать
ТИХИЕ ШИНЫ ЭТОГО НЕ ЗНАЮТ БОЛЬШИНСТВО АВТОМОБИЛИСТОВСкачать
Почему китайские шины такие дешевые?Скачать
КАКОЙ ЦИНК ЛУЧШЕ, ЖЕЛТЫЙ ИЛИ БЕСЦВЕТНЫЙ? Бросаю детали в щелочь и соль.Скачать