Видео:Подключая автоматы гребенкой, знай об этомСкачать
Рекомендации по разводке печатных плат электронных устройств
Основные правила проектирования печатных плат усилителей мощности, блоков
питания, аналого-цифровых устройств.
Как правильно развести шины земли, питания и сигнальных цепей?
Может у ковонить есть печатка на этот усилитель? – раздаются тут и там голоса начинающих (да и не очень) радиолюбителей, страждущих потрудиться на ниве народного рукоделия.
На самом деле, многие из устройств, представленных на просторах интернета, сопровождаются макетами печатных плат. Порой эти платы грешат банальным несоответствием принципиальной схеме, но гораздо чаще – не учитывают простых и известных большинству профессиональных разработчиков правил, позволяющих минимизировать влияние разводки на корректную работу схемы. Особенно это влияние может сказываться при проектировании довольно мощных низкочастотных и практически любых высокочастотных устройств.
Итак – что нужно знать для того, чтобы корректно развести схему?
Начнём с вопросов проектирования и монтажа блоков питания. Тема эта была довольно подробно освещена Джеком Розманом в журнале «Everyday Practical Electronics» (с подробным трёхстраничным переводом этой статьи можно познакомиться на сайте radiopages.ru).
При проектировании печатных плат блоков питания (и не только) не стоит забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют длинные цепи, то на них из-за протекающего тока и ненулевого сопротивления образуется падение напряжения, в результате чего потенциал в разных точках оказывается разным.
Для минимизации фона сети нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов блока питания в усилитель. Для этого дорожки от выпрямителя должны идти только непосредственно на конденсаторы фильтра. Так как по ним циркулируют мощные импульсы зарядного тока, ничего другого к ним подключать нельзя. Провода питания усилителя должны подключаться к выводам конденсаторов фильтра.
Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке ниже:
Рис.1 Правильное подключение (монтаж) однополярного блока питания усилителя
Монтажная схема двухполярного блока питания усилителя мощности, по сути, представляет собой два «отзеркаленных» однополярных блока (Рис.2).
Рис.2 Подключение (монтаж) двухполярного блока питания усилителя
Казалось бы, что может быть проще – взял блок питания, подключил его двумя или тремя проводами к усилителю и всё. должно запеть? Оказывается не всегда.
Часто радиолюбители стараются придать своему усилителю мощность, в разы превышающую необходимую для озвучивания помещения, мотивируя это тем, что так получается более высокий динамический диапазон. При этом усилители большой мощности порой решают одни проблемы, но создают другие.
Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы, отвечающие за разнополярные полуволны, включаются и выключаются поочерёдно. Соответственно по плюсовой и минусовой шинам питания протекают противофазные полуволны зарядных токов. Если эти импульсы через ёмкостные и индуктивные связи попадут в звуковой тракт, это существенно скажется на качестве звучания.
Бифилярная скрутка разнополярных проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положи- тельной и отрицательной полуволн.
На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с разных сторон двухсторонней платы.
При использовании дополнительных фильтрующих конденсаторов, рас- положенных на плате, надо следить, чтобы обе полуволны сигнала суммировались в одной точке земли, как это показано на Рис.4.
Сюда же следует подключать минусовую клемму громкоговорителя, потому как акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю, что приводит к появлению положительной обратной связи и как следствие – нестабильности усилителя.
Земляная шина каскадов предварительного усиления (с малыми токами потребления) также должна соединяться отдельным проводом или дорожкой с точкой «грязной» земли, указанной на Рис.4.
Обычно основная «звезда» в усилителе с однополярным питанием бывает трёхлучевой: сигнальная земля, земля конденсаторов фильтра питания и «грязная» земля. Пример такой топологии представлен на Рис.5:
Рис.5 Пример правильной топологии усилителя мощности
Здесь под «Generic amplifier» следует понимать: как УМЗЧ в интегральном исполнении, так и усилители на дискретных элементах.
Как можно увидеть, к одному лучу подключена сигнальная земля – здесь токи очень малы, поэтому подсоединять все элементы отдельными проводниками нет необходимости. Ко второму лучу отдельными проводниками подключены выводы сильноточных цепей: выходного каскада, цепи Цобеля, нулевой вывод акустической системы и минус байпасных конденсаторов. К третьему лучу подключён общий вывод фильтрующего конденсатора блока питания.
Как-то так сложилось, что заземлением в усилителях часто называют общий провод. Хотя, по определению, заземляющий контакт должен находиться в первую очередь в ваших розетках. К этому контакту подключается корпус усилителя. Вот это и есть настоящее заземление, основное назначение которого защита от поражения электрическим током. Заземление должно быть подключено к общему проводу усилителя через развязывающий резистор (обычно 1кОм 0,5Вт) зашунтированный блокировочным конденсатором на 10нФ (Рис.5).
Обычно рекомендуют подключать общий провод к заземлению у входных разъёмов, именно здесь важно точно выдержать нулевой потенциал. Однако, на практике, если вы подключите заземление к «грязной земле» (корректнее назвать общим проводом) или «сигнальной земле» на печатной плате, это не сильно увеличит фон. В усилителях с балансным входом точка подключения заземления вообще не играет никакой роли.
А теперь давайте посмотрим на рекомендации компании LYNX AUDIO по монтажному соединению блоков усилителя, которые не сильно вступают в противоречия с тем, что было написано выше:
Рис.6 Пример топологии усилителя мощности от LYNX AUDIO
Здесь (Рис.6) левые клеммы на плате усилителя идут ко входному и драйверному каскадам, а правые – к выходному каскаду.
Стереофонический усилитель это по сути два монофонических усилителя.
Использование двух трансформаторов или трансформатора с раздельными обмотками и двумя отдельными выпрямителями не создаёт никаких проблем, обеспечивая полную изоляцию земляных проводников и тем самым предотвращая образование земляной петли.
Если у обоих каналов один (общий) источник питания, то ток, идущий по общему проводу, замыкается через источник сигнала, так как обычно выходные разъёмы источника имеют один общий вывод. В контур попадают и межблочные кабели, которые часто бывают не такие уж и короткие!
Проблема заземления в профес- сиональных усилителях устраняется с помощью использования балансных входов, которым не требуется земля для прохождения сигнала.
Для усилителей с несимметричным входом стандартным приёмом является использование развязывающих резис- торов сопротивлением от 2,2 до 22 Ом между сигнальной землёй и основной точкой заземления на источнике питания (Рис.8 сверху).
Такое решение было использовано в новаторском усилителе мощности Quad 303 в 1969 году. Общий вывод входов соединяется с общим контактом блока питания посредством отдельного толстого проводника.
Другой метод заключается в исполь- зовании для малоточных цепей правого и левого канала одного общего проводника сигнальной земли с зер- кальным расположением элементов, как это показано на Рис.8 снизу.
Принципы разводки плат аналого-цифровых устройств мало чем отличаются от рекомендаций, описанных выше. При этом надо зорко следить, чтобы на плате аналоговая область была отделена от цифровой, не допуская перекрытий аналоговых и цифровых полигонов. В противном случае распределённая ёмкость между перекрывающимися участками будет создавать связь по переменному току, и наводки от работы цифровых компонентов попадут в аналоговую схему.
Шины земли аналоговой и цифровой частей должны быть разведены «звездой».
Рис.9 Примеры правильной и неправильной разводки аналого-цифровых устройств
Питание аналоговой и цифровой частей желательно производить от разных источников (Рис.9). Если питание производится от одного ИП, то его надо либо разводить раздельными полигонами, либо между цифровой и аналоговой частями включать сопротивление небольшого номинала (10. 100 Ом), как это можно увидеть на топологии усилителя (Рис.5).
Дополнительно выводы питания должны быть зашунтированы на землю чип-конденсаторами с малой индуктивностью либо керамическими, располагая их как можно ближе к выводам питания аналоговых и цифровых участков устройства.
Видео:Хитрость с шиной гребёнкойСкачать
Основные виды и типы электротехнических шин
В данной статье будут рассмотрены основные виды и типы электротехнических шин и регламентирующих их производство документов.
Электротехническая шина — это проводник с низким сопротивлением (активным и реактивным), к которому могут подсоединяться отдельные электрические цепи (в низковольтных установках и сетях) или высоковольтные устройства (электрические подстанции, высоковольтные РУ и т.д.). Использование шин обеспечивает экономию площади установки, материало- и трудозатрат.
В качестве основного материала для изготовления электротехнических шин как правило используют алюминий и медь.
Производство шин регламентируется рядом ГОСТов и технических условий:
ГОСТ 15176-89 Шины прессованные электротехнического назначения из алюминия и алюминиевых сплавов. Технические условия. В ГОСТе регламентируются параметры, в соответствии с которыми должны изготовляться алюминиевые шины — толщина, ширина, длина, площадь поперечного сечения, диаметр окружности и соответствующая им масса на 1 метр для готовых шин. Указываются допустимые предельные отклонения от указанных величин, марки алюминия, требования к качеству, внешнему виду, механическим и электрическим параметрам. Приводятся правила маркировки, упаковки и приема шин данного типа.
ГОСТ 434-78 Проволока прямоугольного сечения и шины медные для электрических целей. Технические условия. В стандарте указаны номинальные размеры и расчетные сечения медных шин, марки меди, удельное электрическое сопротивление и предельные отклонения размеров. Приводятся допустимые длины шин и массы бухт, а также возможные отклонения от данных величин. Предъявляются требования к материалу изготовления шин, внешнему виду готовых изделий (допустимые дефекты, цвета). Изложены правила упаковки, транспортировки и хранения, приемки и испытаний.
ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования. Приведена классификация контактных соединений по таким параметрам как: область применения, климатическое исполнение и категории размещения электротехнических устройств, конструктивное исполнение. Указаны требования к конструкции, электрическим и механическим параметрам, надежности и безопасности в зависимости от классификации. Даны ссылки на ряд сопутствующих ГОСТов.
ГОСТ 8617-81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия. Приведена классификация профилей данного типа (по типу, по состоянию материала и типу прочности). Даны ссылки на ГОСТы с номинальными размерами, указаны величины предельных отклонений. Описаны технические требования к маркам алюминиевых сплавов для изготовления профилей, к механическим свойствам, допустимым дефектам, качеству поверхности и внешнему виду готовых изделий. Описаны условия транспортировки и хранения, правила приемки, методы испытаний.
ТУ 1-5-009-80 Шины электротехнические из алюминиевых сплавов.
ТУ 16.705.002-77. Шины алюминиевые прямоугольные. Описаны технические условия для изготовления алюминиевых шин прямоугольным сечением. Указаны номинальные и допустимые размеры, марки сплавов, электрические характеристики.
Согласно классификации, существует несколько типов шин.
Сборная шина — это шина, к которой могут подключаться распределительные шины и блоки ввода/вывода.
Силовая шина (шина электропитания) — шина, которая служит для передачи энергии внутри силовых блоков и между элементами мощных преобразовательных устройств и характеризуется высокими значениями токов и напряжений. Силовая шина может являть собой твердую неизолированную шину, твердую шину в изоляции или конструкцию из набора чередующихся проводящих и изолирующих слоёв. Твердая неизолированная медная шина поставляется производителями с изолирующими шинодержателями различных типов и изолирующими экранами, исключающими непосредственный доступ к клеммам силовых шин. Данные шины характеризуют большая допустимая плотность тока и высокое напряжение изоляции. В качестве материала шин зачастую используется медь и медные сплавы, а также алюминий. По способу крепления силовые шины могут быть вертикальные, горизонтальные, изолированные, задние/ступенчатые и универсальные (мультистандартные).
Шина заземления — главная деталь заземляющей системы электроустановок и электросетей. Её также называют главная заземляющая шина ГЗШ. С шиной заземления соединяется рабочий ноль, защитные нулевые проводники и провода внешних заземлений. Обычно ГЗШ являет собой медную пластину с перфорированными отверстиями. Хотя иногда встречаются и стальные ГЗШ.
Перфорированная медная шина заземления
Перед подключением к ГЗШ, провода заземления должны быть опрессованы наконечником для кабелей или соединительной гильзой, а затем уже подключены на болт с гайкой (например М5). Шина также комплектуется опорными изоляторами с крепежом.
Шина заземления на опорных изоляторах с проводами заземления
Шины для крепления на DIN-рейке — шины, применяемые для крепления на монтажных рейках в электрических щитах или шкафах управления. Данный тип шин зачастую производят из латуни или луженой меди, а диэлектрическое основание, которым осуществляется крепление к монтажным рейкам, из полиамида. Шинами на din-рейку являются нулевые шины, коммутирующие в щитах нулевые провода и провода заземления, или же распределительные шины. Встречаются также шины на din-рейку в корпусе. Такие шины называются распределительными шинами в блоке или распределительными блоками.
Шина нулевая в изоляторе на DIN-рейку
Распределительная шина в блоке
Распределительная шина — это шина, подключенная к сборной шине и питающая устройство вывода. Данная шина входит в состав одной секции НКУ (низковольтного устройства распределения и управления). Одним из видов распределительных шин являются соединительные или гребенчатые шины. Они предназначены для параллельного включения модульных автоматов, УЗО, дифференциальных автоматов, контакторов и т.д. Гребенчатые шины исполняются из медной пластины прямоугольного сечения и помещаются в пластиковый корпус.
Частным случаем распределительных шин являются ступенчатые распределительные блоки. Блоки состоят из ступенчатых изоляционных опор, с помощью которых осуществляется крепление, и как правило 4-х медных шин. На шинках находятся отверстия: резьбовые (М6) для отходящих цепей и без резьбы для питания распределительного блока. Блок может устанавливаться как горизонтально (в зоне коммутационного оборудования), так и вертикально (в кабельном канале шкафа). К лицевой части блока крепится изолирующий экран.
Ступенчатый распределительный блок
Схема горизонтальной и вертикальной установки распределительного блока
Номинальные значения параметров шин указаны в приведенных в начале статьи ГОСТах. Поэтому далее в статье будут приведены лишь ключевые характеристики различных типов шин.
Выпуск алюминиевых шин марки ШАТ регламентирует ТУ 16-705 002-77. Данные шины изготавливают прямоугольным сечением. Диапазон изменения ширина шины ШАТ — от 10 до 120 мм, толщины — от 3 до 12 мм, поперечного сечения — от 30 до 1440 мм 2 . Величина удельного сопротивления не больше 0,0282 мкОм*м. Шины марок АД0 и АД31 (ГОСТ 11069-79 и ГОСТ 15176-89) изготавливаются прямоугольным сечением площадью от 30 до 25800 мм 2 . Диапазон изменения толщины данных шин — от 3 мм до 110 мм, ширины — от 6 мм до 500 мм. Значение удельного сопротивления постоянному току: шины АД0 — до 0.029 мкОм*м; шины АД31 — от 0,0325 до 0,0350 мкОм*м (зависит от типа). Диапазон длительно допустимых токов (определяется сечением шины) — от 165 А до 2300 А. Для производства шин используется алюминий А5, А5Е, А6, А7, АД00, АД0 и алюминиевые сплавы АД31 и АД31Е. Для изменения свойств материала используются следующие технологии: закаливание и естественное состаривание, закаливание и искусственное состаривание, не полное закаливание и искусственное состаривание, а также горячее прессование (без термической обработки). Длина алюминиевых шин зависит от площади поперечного сечения и должна быть равной или кратной: от 3 до 6 м для шин сечением до 0.8 см 2 ; от 3 до 8 м — для шин сечением от 0.8 до 1.5 см 2 ; от 3 до 10 м — для шин сечением более 1.5 см 2 . Колебания в длине — не более 20мм. Алюминиевые шины отличаются малым весом и невысокой стоимостью.
Медные шины согласно ГОСТ 434-78 выпускаются таких марок: ШММ — шина медная мягкая, ШМТ — шина медная твердая, ШМТВ — шина медная твердая из бескислородной меди. Минимальная и максимальная ширина медных шин — 16 мм и 120 мм, толщина — 4 мм и 30 мм, поперечное сечение — 159 мм 2 и 1498 мм 2 . Значение удельного электрического сопротивления — не больше 0,01724 мкОм*м. Диапазон длительно допустимых токов — от 210 до 2950 А (шина 120×10) и выше при большей толщине, для гибкой медной шины — от 280 до 2330 А. Масса шин в бухте должна быть в пределах от 35 кг до 150 кг. Длина шин согласно ГОСТ — от 2 до 6 м. Твердые медные шины в сравнении с мягкими обладают меньшей проводимостью и применяются там, где требуется прочный и неподвижный шинопровод. Для изготовления мягких шин используется медь марок М1, М1М, М2. Гибкие шины более распространены, они обладают большей прочностью, долговечностью и лучшими характеристиками. Для изготовления шин из бескислородной меди используют особые медные сплавы, не имеющие в своем составе оксидов. Медные шины отличают такие преимущества в сравнении с алюминиевыми: высокая удельная проводимость (в 1,6 выше чем у алюминиевых шин), механическая прочность, теплопроводность и гибкость, коррозийная стойкость, стыковые контакты с другими шинами не окисляются. По причине высокой окисляемости на открытом воздухе и хрупкости, применение алюминиевых шин имеет ряд ограничений. Они не используются в машинах и механизмах с подвижными частями или вибрирующим корпусом. Поэтому в случаях, когда к токоведущим частям предъявляются повышенные требования, применяются медные шины.
Шины являют собой токоведущие части электрических установок, соединяя между собой оборудование различного типа: генераторы, трансформаторы, синхронные компенсаторы, выключатели, разъединители, контакторы и т.д. Током нагрузки определяется сечение шин, также учитывается устойчивость к току к.з.
Шинный мост из жестких неизолированных шин применяется: на выводах генераторов, на входах главных распределительных устройств, в соединениях трансформатора с РУ и КРУ на 6 — 10 кВ, ГРУ и трансформатора связи.
Шинный мост от силового трансформатора
Соединения из жестких неизолированных шин прямоугольным или коробчатым сечением выполняются в закрытых РУ 6 — 10 кВ (в том числе сборные шины), в качестве соединений между ГРУ и трансформатором собственных нужд, между шкафами распределительных щитов. Шины коробчатого сечения рекомендуют использовать при больших токах, они обеспечивают меньшие потери и лучшее охлаждение. Крепление жестких шин осуществляется с помощью опорных изоляторов. Гибкие шины применяются в РУ на 35 кВ и выше, в соединениях блочных трансформаторов с ОРУ.
Во всех типах соединений в низковольтных установках и сетях промышленного назначения для передачи, распределения электроэнергии и подключения управляющих устройств используются медные изолированные шины (как жесткие, так и гибкие). Конструктивно данные шины являют собой одну или несколько медных тонких пластин иногда луженых с концов, покрытых изолирующей оболочкой как правило из ПВХ или другого диэлектрика с высоким сопротивлением. Данные шины являются альтернативой как кабелям, так и жесткой ошиновке и могут служить соединением между: главной силовой машиной и распределительным оборудованием (контакторами, прерывателями цепи, переключателями и т.д.), выводом трансформатора и шинопроводом, шинопроводом и электрическим шкафом.
Коммутация гибкой изолированной шиной отходящих автоматов
Применение изолированных шин позволяет экономить место, так как шины можно располагать гораздо ближе друг к другу, чем в случае неизолированной ошиновки. Преимущества изолированных шин — устойчивость к коррозии и простота монтажа. Крепежные отверстия контактных площадок делаются пробивкой непосредственно в материале контакта, что лишает потребности в кабельных наконечниках и устраняет проблемы плохого присоединения контактов. Большим спросом пользуются именно гибкие изолированные медные шины. Их главное преимущество в сравнении с жесткими — более легкий монтаж, так как нет необходимости в специнструментах и резке шины, если нужен поворот в плоскости. Гибкая шина легко меняет форму в зависимости от потребностей монтажа. Однако ряд производителей выпускают твердые изолированные шины, в том числе и по запросу. Крепление изолированных шин осуществляется с использованием болта и контактных шайб. Затягивать необходимо ключом, имеющим ограничения по моменту затяжки. Крепеж не должен быть в смазке.
Крепление медной изолированной шины
Еще одной разновидностью гибких шин являются медные плетённые шины. Такая шина сплетена из медных полос и является очень гибкой. Она используется в местах, подверженных сверхсильной вибрации, таких например, как трансформаторные шинные мосты. Данные шины также применяются для подключения различного оборудования к шинопроводам и линиям шин. Контактные площадки плетённых шин бывают как со сверлением, так и без. Выпускаются также плетённые шины, изготовленные особым методом — диффузионной сварки под давлением. Тонкослойные материалы свариваются путем пропускания через них постоянного тока под давлением. Такие шины также называют пластинчатые шинные компенсаторы или гибкие пластинчатые шины. Они имеют большую токопроводимость и меньшее тепловыделение.
Их применяют там, где необходимы компенсация теплового расширения, вибро- или сейсмоустойчивость, а также где происходит регулярный изгиб в одной оси. Например это могут быть: гибкие токопроводы для сварочных аппаратов, автоматических выключателей, шины питания для индукционных печей и печей сопротивления и т.д.
Жесткая медная шина более всего подходит для замены кабеля, используется в распределительных устройствах, а также для изготовления шинных сборок и шинопроводов. Производителями выпускаются как перфорированные так и гладкие шины различных размеров, в соответствии с ГОСТ. Производителями шин в настоящее время выпускается множество зажимов, соединителей и шинодержателей, облегчающих монтаж и обеспечивающих надёжный контакт. Зажимы предназначены для соединения жестких и гибких шин различного типа, биметаллические пластины — для алюминиевых и медных шин.
Шинодержатели выпускаются плоские, регулируемые плоские, компактные и усиленные, ступенчатые, а также универсальные.
Производителями предлагается широкий выбор изоляторов: опорные, проходные, изоляторы типа «лесенка». Все они используются для фиксации шин внутри шкафов и корпусов. Изоляторы одной стороной крепятся с помощью болтов к монтажному корпусу, с другой к ним крепится шина.
Шинный изолятор типа «лесенка»
Производителей меди и алюминия на рынке РФ можно пересчитать «по пальцам», точнее объединяющих их холдинги. Брендов электротехнических шин огромное количество, одних только марок мы насчитали более сотни (по всем типам шин) в виду этого нами принято решение развить эту тему и создать отдельный сайт полностью посвященный электротехническим шинам.
В этой связи приглашаем всех участников рынка электротехнических шин разместить информацию о своих продуктах на новом сайте.
📺 Видео
Питание DALI | Особенности подключения | Шина DALIСкачать
Кросс-модуль | Распределительный блок применение. Что такое кросс-модуль?Скачать
CAN шина👏 Как это работаетСкачать
Автомат на 16А для кабеля 2,5мм! Дурные советы электрикаСкачать
СБОРКА ЩИТОВ нулевые шинкиСкачать
АЛЮМИНИЕВАЯ ШИНА-400А ТОКАСкачать
Соединение автоматов с помощью шиныСкачать
Кан шина, что это? Поймет школьник! принцип работыСкачать
Блоки питания 48V - для магнитной трековой системы Infinity - prohouse.com.uaСкачать
Распределительный блок (РБД), Кросс модули, Шинки. Что, зачем, почему | KonstArtStudioСкачать
КАК НЕ СПАЛИТЬ СВОЮ МАШИНУ АВТОЗВУКОМСкачать
Шина гребёнка ИЕК для электрощитов под автоматыСкачать
Как подключать автоматы и УЗО гребенками HagerСкачать
УЗО или ДИФавтомат, что выбрать.Скачать
Простая проверка CAN шины. Сканер не видит автомобиль через OBD2. Как правильно выбрать изоленту.Скачать
Провода, токопровод, шиныСкачать
Новинка! Сантехнические шины STOUTСкачать
Как и куда подключить нулевую жилу и жилу заземления в щите? Электрика для начинающихСкачать