Шина кэш памяти это

Видео:В чём отличие кэша в процессорах и как он работает? Какой лучше, быстрее и объемней? L1, L2, L3Скачать

В чём отличие кэша в процессорах и как он работает? Какой лучше, быстрее и объемней? L1, L2, L3

Шина кэш памяти этоКомпьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Видео:Принцип работы КЭШ памятиСкачать

Принцип работы КЭШ памяти

Системные платы

Видео:Разгон кольцевой шины и кэша L3 процессораСкачать

Разгон кольцевой шины и кэша L3 процессора

Шина процессора

Видео:КАК РАБОТАЕТ КЭШ ПРОЦЕССОРА | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

КАК РАБОТАЕТ КЭШ ПРОЦЕССОРА | ОСНОВЫ ПРОГРАММИРОВАНИЯ


Общие сведения о шине процессора

Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Шина кэш памяти это

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Читайте также: Китайские шины в европе

Шина кэш памяти это

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.

Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.

Читайте также: Сколько лет шину цукинами

Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).

Шина кэш памяти это

Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.

Пропускная способность шины процессора

Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).

Шина кэш памяти это

Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.

Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.

Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.

Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.

Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.

Видео:Влияние кэш памяти процессора на быстродействие компьютераСкачать

Влияние кэш памяти процессора на быстродействие компьютера

Логическая организация кэш-памяти процессора

На днях решил систематизировать знания, касающиеся принципов отображения оперативной памяти на кэш память процессора. В результате чего и родилась данная статья.

Кэш память процессора используется для уменьшения времени простоя процессора при обращении к RAM.

Основная идея кэширования опирается на свойство локальности данных и инструкций: если происходит обращение по некоторому адресу, то велика вероятность, что в ближайшее время произойдет обращение к памяти по тому же адресу либо по соседним адресам.

Логически кэш-память представляет собой набор кэш-линий. Каждая кэш-линия хранит блок данных определенного размера и дополнительную информацию. Под размером кэш-линии понимают обычно размер блока данных, который в ней хранится. Для архитектуры x86 размер кэш линии составляет 64 байта.

Шина кэш памяти это

Так вот суть кэширования состоит в разбиении RAM на кэш-линии и отображении их на кэш-линии кэш-памяти. Возможно несколько вариантов такого отображения.

DIRECT MAPPING

Основная идея прямого отображения (direct mapping) RAM на кэш-память состоит в следующем: RAM делится на сегменты, причем размер каждого сегмента равен размеру кэша, а каждый сегмент в свою очередь делится на блоки, размер каждого блока равен размеру кэш-линии.

Шина кэш памяти это

Блоки RAM из разных сегментов, но с одинаковыми номерами в этих сегментах, всегда будут отображаться на одну и ту же кэш-линию кэша:

Читайте также: Шины nokian в беларуси

Шина кэш памяти это

Адрес каждого байта представляет собой сумму порядкового номера сегмента, порядкового номера кэш-линии внутри сегмента и порядкового номера байта внутри кэш-линии. Отсюда следует, что адреса байт различаются только старшими частями, представляющими собой порядковые номера сегментов, а порядковые номера кэш-линий внутри сегментов и порядковые номера байт внутри кэш-линий — повторяются.

Таким образом нет необходимости хранить полный адрес кэш-линии, достаточно сохранить только старшую часть адреса. Тэг (tag) каждой кэш-линии как раз и хранит старшую часть адреса первого байта в данной кэш-линии.

b — размер кэш-линии.
m — количество кэш-линий в кэше.

Для адресации b байт внутри каждой кэш-линии потребуется: log2b бит.
Для адресации m кэш-линий внутри каждого сегмента потребуется: log2m бит.

m = Объем кэш-памяти/Размер кэш линии.

Для адресации N сегментов RAM: log2N бит.

N = Объем RAM/Размер сегмента.

Для адресации байта потребуется: log2N + log2m + log2b бит.

Этапы поиска в кэше:
1. Извлекается средняя часть адреса (log2m), определяющая номер кэш-линии в кэше.
2. Тэг кэш-линии с данным номером сравнивается со старшей частью адреса (log2N).

Если было совпадение по одному из тэгов, то произошло кэш-попадание.
Если не было совпадение ни по одному из тэгов, то произошел кэш-промах.

FULLY ASSOCIATIVE MAPPING

Основная идея полностью ассоциативного отображения (fully associative mapping) RAM на кэш-память состоит в следующем: RAM делится на блоки, размер которых равен размеру кэш-линий, а каждый блок RAM может сохраняться в любой кэш-линии кэша:

Шина кэш памяти это

Адрес каждого байта представляет собой сумму порядкового номера кэш-линии и порядкового номера байта внутри кэш-линии. Отсюда следует, что адреса байт различаются только старшими частями, представляющими собой порядковые номера кэш-линий. Порядковые номера байт внутри кэш-линий повторяются.

Тэг (tag) каждой кэш-линии хранит старшую часть адреса первого байта в данной кэш-линии.

b — размер кэш-линии.
m — количество кэш-линий, умещающихся в RAM.

Для адресации b байт внутри каждой кэш-линии потребуется: log2b бит.
Для адресации m кэш-линий: log2m бит.

m = Размер RAM/Размер кэш-линии.

Для адресации байта потребуется: log2m + log2b бит.

Этапы поиска в кэше:
1. Тэги всех кэш-линий сравниваются со старшей частью адреса одновременно.

Если было совпадение по одному из тэгов, то произошло кэш-попадание.
Если не было совпадение ни по одному из тэгов, то произошел кэш-промах.

SET ASSOCIATIVE MAPPING

Основная идея наборно ассоциативного отображения (set associative mapping) RAM на кэш-память состоит в следующем: RAM делится также как и в прямом отображении, а сам кэш состоит из k кэшей (k каналов), использующих прямое отображение.

Шина кэш памяти это

Кэш-линии, имеющие одинаковые номера во всех каналах, образуют set (набор, сэт). Каждый set представляет собой кэш, в котором используется полностью ассоциативное отображение.

Блоки RAM из разных сегментов, но с одинаковыми номерами в этих сегментах, всегда будут отображаться на один и тот же set кэша. Если в данном сете есть свободные кэш-линии, то считываемый из RAM блок будет сохраняться в свободную кэш-линию, если же все кэш-линии сета заняты, то кэш-линия выбирается согласно используемому алгоритму замещения.

Шина кэш памяти это

Структура адреса байта в точности такая же, как и в прямом отображении: log2N + log2m + log2b бит, но т.к. set представляет собой k различных кэш-линий, то поиск в кэше немного отличается.

Этапы поиска в кэше:
1. Извлекается средняя часть адреса (log2m), определяющая номер сэта в кэше.
2. Тэги всех кэш-линий данного сета сравниваются со старшей частью адреса (log2N) одновременно.

Если было совпадение по одному из тэгов, то произошло кэш-попадание.
Если не было совпадение ни по одному из тэгов, то произошел кэш-промах.

Т.о количество каналов кэша определяет количество одновременно сравниваемых тэгов.

  • Правообладателям
  • Политика конфиденциальности

🎥 Видео

Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?Скачать

Как работает компьютерная память: что такое RAM, ROM, SSD, HDD и в чем разница?

03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

ДЛЯ ЧЕГО НУЖЕН КЭШ ПРОЦЕССОРАСкачать

ДЛЯ ЧЕГО НУЖЕН КЭШ ПРОЦЕССОРА

Виды видеопамяти и сколько её нужно? Какая нужна шина?Скачать

Виды видеопамяти и сколько её нужно? Какая нужна шина?

Кэш-памятьСкачать

Кэш-память

КАК РАБОТАЕТ ПАМЯТЬ КОМПЬЮТЕРА | ОСНОВЫ ПРОГРАММИРОВАНИЯСкачать

КАК РАБОТАЕТ ПАМЯТЬ КОМПЬЮТЕРА | ОСНОВЫ ПРОГРАММИРОВАНИЯ

Влияние шин PCI-e и внутренней шины видеокарты на производительностьСкачать

Влияние шин PCI-e и внутренней шины видеокарты на производительность

Кэшированная память Windows 10 что это и как очиститьСкачать

Кэшированная память Windows 10 что это и как очистить

Шина компьютера, оперативная память, процессор и мостыСкачать

Шина компьютера, оперативная память, процессор и мосты

Что такое кэш память процессора\на что она влияет?!Скачать

Что такое кэш память процессора\\на что она влияет?!

Влияние объема кэша на производительность в играхСкачать

Влияние объема кэша на производительность в играх

АПС Л14. ШиныСкачать

АПС Л14. Шины

3D V-Cache: Что это? Для чего нужен? Как появился?Скачать

3D V-Cache: Что это? Для чего нужен? Как появился?

Увеличение кеша L3 в два раза. Тесты производительностиСкачать

Увеличение кеша L3 в два раза. Тесты производительности

Значение слова кэш. Что такое кэш.Скачать

Значение слова кэш. Что такое кэш.
Поделиться или сохранить к себе:
Технарь знаток