Шина самолета в разрезе

Видео:Почему шасси самолёта никогда не взорвется?Скачать

Почему шасси самолёта никогда не взорвется?

Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии

Шина самолета в разрезе

Современная авиационная шина — сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина — многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.

При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.

Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.

За счет существенного уменьшения массы шин и одновременного увеличения количества выдерживаемых ими приземлений, снижаются эксплуатационные и топливные расходы. Как результат — уменьшение негативного влияния на окружающую среду за счет уменьшения выбросов CO2 в атмосферу и меньшего количества используемого сырья.

Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колеса (пневматики).

Амортизационные стойки служат для обеспечения максимальной плавности хода при движении по аэродрому, на разбеге и пробеге, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы, в которых функцию пружинного элемента выполняет закачанный под строго определенным давлением технический азот). На многоколесных тележках шасси тяжелых самолетов могут быть установлены также дополнительные амортизаторы — стабилизирующие демпферы. Усиленные стойки шасси способны выдержать удар о выступающие ребра бетонных плит высотой до 10 см при движении самолета с посадочной скоростью или грубую посадку.

Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колеса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.

Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.

Диски (барабаны) колес часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.

Сложная высокотехнологическая структура

Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.

На современных скоростных самолетах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замерзания на высоте, с образованием опасного льда и кроме того азот дешев и не горит). Протекторы шин шасси самолетов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.

В целом современная авиационная шина — сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.

Авиационная шина способна выдерживать широкий диапазон условий эксплуатации. Находясь на земле, она должна поддерживать массу самолета. Во время выруливания — обеспечивать стабильный плавный ход, сопротивляясь в то же время теплообразованию, истиранию и износу. Во время взлета конструкция шины должна быть способна выдерживать не только нагрузку самолета, но и силы, создаваемые при высоких скоростях качения при разбеге. Посадка требует от шины поглощения колоссальных динамических ударных нагрузок. Все эти процессы должны выполняться стабильно, обеспечивая длительный и надежный срок службы шин.

Для этих экстремальных требований нужна достаточно сложная шина. Шина современного самолета — это композит из нескольких различных резиновых смесей (смеси натурального и синтетического каучука), текстильного материала и стали. Каждый компонент шины служит конкретной цели в реализации ее эксплуатационных характеристик. Шины самолетов очень прочные, поскольку армируются железными кордами, нейлоном, а также полимером арамид.

Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые

  • поглощение кинетической энергии ударов при посадке и движении по неровной поверхности аэродрома с целью уменьшения перегрузок и рассеивание возможно большей части этой энергии для быстрого гашения колебаний;
  • минимум массы конструкции при заданной прочности, жесткости и долговечности;
  • минимум аэродинамического сопротивления в выпущенном положении;
  • высокая технологичность конструкции.

Читайте также: Чарли шин настоящее имя

Высокое давление

Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.

Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.

Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.

Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.

Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.

Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.

Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.

В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.

Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.

Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.

Статические и динамические тестовые проверки

  1. Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
  2. Определение давления посадки шины на обод колеса. Один из методов — копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
  3. Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
  4. Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.

Динамические

  1. Поправка давления. Выполняется учет влияния кривизны барабана.
  2. Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д. Источник

Видео:Шасси самолёта , делают так !!!Скачать

Шасси самолёта , делают так !!!

Как устроена система шасси и тормозов пассажирского самолета

Всем привет. В продолжение темы описания авиационных систем «для чайников» (тут и тут), я подготовил новый текст про шасси и колёсные тормоза самолётов. Параграф добавлен после прочтения комментариев: Прежде чем продолжить, хочу уточнить, что основной моей специализацией является бортовое радиоэлектронное оборудование, а не отдельные системы самолёта. Соответственно «чайникам» я тоже рассказываю «усеченную» картину мира, достаточную для их работы. Мне кажется, что эти материалы могут быть интересны и более широкому кругу читателей. При этом на полноту освещения рассматриваемой темы не претендую. Так что не стреляйте в пианиста, он играет как умеет. ? Система колёс, на которые опирается самолёт при движении по земле, называется шасси. В современных авиалайнерах используется трёхстоечная система шасси с двумя основными стойками, расположенными под крылом позади центра тяжести и одной передней стойкой, расположенной в носу самолёта. Основные стойки шасси оснащаются тормозами, а передняя стойка делается поворотной, чтобы самолет мог маневрировать при движении по земле. На больших самолетах типа Аirbus 380 или Boeing 747 в дополнение к основным стойкам делают вспомогательные, чтобы распределить значительный вес гигантского самолета. На всех стойках шасси установлены амортизаторы. Принцип действия и назначение которых похожи на автомобильные, но основная задача — смягчить перегрузки на посадке, чтобы нагрузки на узлы самолёта не превышали допустимых. .

Видео:Как шины самолёта выдерживают такую нагрузку?Скачать

Как шины самолёта выдерживают такую нагрузку?

1. Поворотная носовая стойка

Шина самолета в разрезе

Кроме распределения веса самолета, носовая стойка поворачивается влево-вправо, чтобы самолет мог маневрировать при движении на земле. Поворотом носовой стойки можно управлять двумя способами:

  • С помощью педалей управления рулём направления,
  • С помощью специальной ручки управления разворотом носовой стойки.

Управление поворотом носовой стойки с помощью педалей осуществляется на разбеге при взлёте и пробеге при посадке, когда скорость самолета достаточно велика. Одновременно, с помощью этих же педалей, летчик управляет отклонением руля направления.

Предел отклонения носовой стойки при управлении от педалей специально ограничен, как правило это 10 градусов. Поворачивать на рулёжные дорожки, когда надо отклонять носовую стойку на углы порядка 50-70 градусов, не получится. На малых скоростях для руления используется ручка управления носовой стойкой.

Эта ручка используется только при рулёжке и автоматически отключается при больших скоростях движения.

Видео:Взрыв колеса на БЕЛАЗЕ!!! СМОТРЕТЬ ВСЕМ!Скачать

Взрыв колеса на БЕЛАЗЕ!!! СМОТРЕТЬ ВСЕМ!

2. Основные опоры шасси и Колёсные тормоза

Основные опоры шасси представляют собой тележку, на которую навешиваются колеса, оснащённые тормозами.

Шина самолета в разрезе

Тормоза на самолёте похожи на автомобильные, только существенно мощнее, что не удивительно, т.к. им приходится тормозить машину массой 30-600 тонн со скоростей порядка 250 км/ч до нуля на ограниченной по длине взлётно-посадочной полосе (ВПП).

Самолётные тормоза состоят из «бутерброда» тормозных дисков и колодок.

В комментариях уточнили, что статическая часть тормозов в нашем случае тоже называется дисками. В разговоре с профильными специалистами я всегда слышал про «колодки». Возможно это жаргонизм, но на описание системы «для чайников» это влияет мало. В любом случае принцип действия тот же, что и в автомобильных тормозах, а реализация гораздо более мощная.

Колёсные тормоза могут быть задействованы двумя разными способами: «вручную» и автоматически.

«Вручную» пилот тормозит педалями. Может возникнуть вопрос, как пилот умудряется педалями и носовой стойкой управлять и тормозить? Дело в том, что педали самолёта устроены совсем не так, как в автомобиле. Управление по направлению выполняется перемещением педалей вперёд-назад. При этом две педали двигаются синхронно: левая вперёд-правая назад и наоборот. Управление тормозами осуществляется нажатием на педаль. Каждую педаль можно нажимать отдельно, так называемое дифференциальное торможение — это ещё один из способов управления направлением движения по земле. Если левым тормозом пользоваться интенсивнее, чем правым, то и самолёт будет разворачивать влево и наоборот.

Автоматический режим торможения включается сам при наступлении определенного события. Таких событий может быть два:

  • Во время посадки: Одновременное касание полосы (срабатывание датчиков обжатия шасси) и нахождение ручек управления двигателями в положении «малый газ»,
  • Во время взлёта: Перевод ручек управления двигателем из положения «взлётный режим» в положение «малый газ». Этот режим торможения называется «прерванный взлёт» (Rejected Takeoff, RTO)

Активировать/деактивировать режим автоторможения в самолётах Airbus и SSJ-100 лётчик может с помощью одной из четырёх кнопок под ручкой уборки-выпуска шасси (В Boeing для этого используется переключатель). Три кнопки (LOW, MED, MAX) соответствуют различным интенсивностям торможения при посадке, а четвертая (RTO) активирует режим прерванного взлёта.

С автоторможением при посадке всё очевидно. Давайте рассмотрим режим прерванного взлёта.

Прерванный взлёт — это режим, когда экипаж решает прекратить взлёт по причине существенного отказа. Прервать взлёт можно только до достижения «скорости принятия решения». Скорость принятия решения зависит от длины и состояния поверхности ВПП и рассчитывается исходя из возможности затормозить, не выкатившись за пределы ВПП. Если в процессе набора скорости неисправность происходит после достижения скорости принятия решения, экипаж продолжит взлёт, что бы не случилось. Если до — будет тормозить.

Перед каждым взлётом экипаж обязан активировать автоторможение. Скорость начала и интенсивность торможения при прерванном взлёте напрямую влияет на то, выкатится ли самолёт за пределы полосы или нет. Активированное автоторможение гарантирует, что торможение начнётся немедленно после вывода двигателей из взлётного режима.

Если прерывать взлёт приходится при максимальной взлётной массе и на предельной скорости, то несмотря на то, что кроме колёсных тормозов экипаж задействует реверс и воздушные тормоза, энергия, которую должны поглотить тормоза, разогревает их так, что они начинают светиться не хуже лампочки. После полной остановки самолёта работа тормозов не заканчивается. Они должны выдержать ещё не менее 90 секунд, прежде чем подожгут стойки шасси. По нормативам, что за 90 секунд к самолёту подоспеет пожарная команда, которая всегда дежурит в аэропортах (и успевает!).

Шина самолета в разрезе

Спасибо комментариям — напомнили об одной очень важной функции тормозов авиалайнера: антиблокировочной системе (АБС). Основное отличие АБС самолёта от таковой автомобиля заключается в последствиях блокировки колёс: если у автомобиля блокировка приводит к снижению управляемости и увеличению тормозного пути, то заблокированные колёса самолёта при посадке просто взрываются от трения об асфальт. А без покрышек основных стоек торможение не будет ни эффективным ни безопасным. Так что АБС на самолёте неотключаемая и довольно критическая функция.

Видео:Почему покрышки НЕ взрываются при посадке самолета?Скачать

Почему покрышки НЕ взрываются при посадке самолета?

3. Уборка — выпуск шасси

Кроме тормозов и управления носовой стойкой с шасси связана ещё одна важная функция — уборка/выпуск шасси. Управление уборкой-выпуском шасси в нормальном режиме осуществляется с помощью соответствующей ручки на приборной панели.

Вверх — убрать, вниз — выпустить. Кстати, можно не бояться случайно «сложить» стойки шасси, когда самолёт стоит на земле — в современных авиалайнерах предусмотрена блокировка от таких действий, когда шасси «обжаты» — амортизаторы находятся в сжатом состоянии под действием веса ЛА .

Для улучшения аэродинамических свойств ЛА ниши, в которых размещаются убранные шасси, закрываются створками, поэтому процедура нормальной уборки шасси выглядит примерно так:

  1. Вычислитель снимает замки закрытого положения створок и подаёт команду на открытие створки
  2. Створки полностью открыты и зафиксированы в открытом положении. Соответствующие датчики сообщают об этом вычислителю
  3. Вычислитель открывает замки выпущенного положения стоек шасси и начинает их уборку.
  4. Стойки полностью убраны и зафиксированы в закрытом положении. Соответствующие датчики сообщают об этом вычислителю
  5. Вычислитель открывает замки открытого положения створок и начинает их закрывать
  6. Створки полностью закрыты и зафиксированы в закрытом положении. Вычислитель фиксирует признак окончания уборки шасси

Весь процесс занимает 20-40 секунд. Если в процессе что-то идёт не так, то система прерывает процесс, т.к. есть вероятность что-то сломать. Нормальный выпуск шасси происходит в обратном порядке.

На случай неисправностей в системе уборки-выпуска предусмотрен особый порядок выпуска шасси — аварийный выпуск. Аварийный выпуск активируется кнопкой аварийного выпуска, расположенной под колпачком рядом с ручкой уборки-выпуска шасси. При аварийном выпуске средствами, не зависящими от вычислителя системы уборки-выпуска шасси, снимаются замки убранного положения стоек шасси и створок. Шасси вываливается под собственным весом. Массы каждой из стоек достаточно чтобы выломать створку, даже если та не откроется сама. На замки нижнего положения стойки также встают под действием собственного веса.

Видео:Испытания авиационной шиныСкачать

Испытания авиационной шины

4. Датчики обжатия стоек шасси

Информация об обжатии стоек шасси, которые я упоминал выше, это очень нужная многим системам информация. Пожалуй, стоит перечислить кое-какие функции, зависящие от этого сигнала:

При появлении сигнала обжатия шасси:

  1. При посадке: система управления, если активирован автовыпуск воздушных тормозов, выпускает воздушные тормоза. Воздушные тормоза портят картину обтекания крыла, подъёмная сила резко снижается, появляется вес на стойках и колёсные тормоза могут начать работать эффективно
  2. При посадке: включается система автоматического торможения колёс (см. выше)
  3. Снимается блокировка включения реверса двигателя
  4. Выключается часть излучающих радиоприборов (чтобы не облучать наземный персонал)
  5. После остановки самолёта появляются сообщения системы технического обслуживания, которые не влияют на действия пилота в полёте
  6. Система регулирования давления выравнивает давление внутри и снаружи самолёта
  7. Отключается блокировка систем технического обслуживания, в частности появляется возможность обновить ПО бортовых вычислителей

При снятии сигнала обжатия шасси:

  1. Снимается блокировка уборки шасси
  2. Кратковременно активируются тормоза для того, чтобы затормозить колёса, вращающиеся по инерции после отрыва самолета от земли
  3. Блокируется возможность включения реверса двигателя
  4. Блокируется часть сообщений системы оповещения экипажа, которая не требует реакции лётчика непосредственно в полёте (Если быть точным, то блокировка начинается с момента перевода ручек управления двигателями в положение «взлёт», но именно датчик обжатия шасси является непосредственным индикатором того, что самолёт находится в воздухе)

Параграф добавлен после прочтения комментариев: Датчики обжатия стоек шасси как правило выполняются многоканальными и располагаются на каждой из стоек. Данные с многочисленных датчиков собираются специальными устройствами, концентраторами данных. На основании полученных данных формируются сигналы об обжатии каждой из стоек и сигнал обжатия всех стоек. В логике работы описанных выше функций используются разные сигналы: для начала автоторможения достаточно сигналов обжатия двух основных стоек, а для включения режима тех. обслуживания надо чтобы были обжаты все три стойки. Но это уже другая история.

Видео:Авиационные колесаСкачать

Авиационные колеса

Бонус

Пока я готовил этот текст, решил для себя разобраться, почему на некоторых самолётах, например Boeing 757 тележка основных стоек шасси в полете наклонена так, что передние колёса находятся выше задних:

А на Boeing 767 наоборот, передние колеса ниже задних:

Как выяснилось всё дело в том, как спроектирована ниша, куда убираются стойки шасси, спасибо видео:

И, что самое любопытное, в военно-транспортном C5 Galaxy основные стойки шасси выпускаются в положении поперёк движения самолёта и только потом разворачиваются на 90 градусов в нужное положение.

  • Свежие записи
    • Нужно ли менять пружины при замене амортизаторов
    • Скрипят амортизаторы на машине что делать
    • Из чего состоит стойка амортизатора передняя
    • Чем стянуть пружину амортизатора без стяжек
    • Для чего нужны амортизаторы в автомобиле

    💥 Видео

    Почему шины самолета не взрываются при приземлении?Скачать

    Почему шины самолета не взрываются при приземлении?

    Почему не разрабатывают шины для самолетов, которые вращаются при посадке?Скачать

    Почему не разрабатывают шины для самолетов, которые вращаются при посадке?

    Невероятный процесс производства авиационных шинСкачать

    Невероятный процесс производства авиационных шин

    Разборка колеса вертолетаСкачать

    Разборка колеса вертолета

    wheel of airplane замена колеса самолётаСкачать

    wheel of airplane замена колеса самолёта

    Конструкция самолёта Ан-2. Рассказываю, как устроены колеса шассиСкачать

    Конструкция самолёта Ан-2. Рассказываю, как устроены колеса шасси

    Жестяные банки, Замена шин реактивного самолета – Из чего это сделано? (Как это сделано?) 🎞Скачать

    Жестяные банки, Замена шин реактивного самолета – Из чего это сделано? (Как это сделано?) 🎞

    Замена шин самолетаСкачать

    Замена шин самолета

    Авиационные шины на 2ПТС4 ШиномонтажСкачать

    Авиационные шины на 2ПТС4 Шиномонтаж

    Колёса на шасси самолёта найдены.Скачать

    Колёса на шасси самолёта найдены.

    Замена носового колеса самолетаСкачать

    Замена носового колеса самолета

    шины самолетаСкачать

    шины самолета

    Авиационные шины на 2ПТС4Скачать

    Авиационные шины на 2ПТС4
Поделиться или сохранить к себе:
Технарь знаток