Шина spi для ардуино

SPI -Serial Peripheral Interface, краткое руководство

Данная статья является кратким дискурсом по шине SPI и не должна восприниматься как точная техническая документация. Рассматривается только полнодуплексный вариант применения.

Видео:Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч1)Скачать

Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч1)

Общие сведения:

SPI — (Serial Peripheral Interface) эспиай, последовательный периферийный интерфейс иногда называемый 4-х проводным интерфейсом, является последовательным синхронным интерфейсом передачи данных. Изобретён компанией Motorola в середине 1980-x. В отличие от I2C и UART, SPI требует больше сигналов для работы, но может работать на более высоких скоростях. Не поддерживает адресацию, вместо этого используется сигнал SS (slave select — выбор ведомого), который также иногда называется CS (chip select), CE (chip enable) или SE (slave enable). Поддерживает только одного ведущего на шине. Ведущий устанавливает скорость обмена данными и другие параметры, такие как полярность и фаза тактирования. Обмен данными происходит в режиме полного дуплекса, что означает устройства на шине могут одновременно передавать и принимать данные. Интерфейс использует следующие сигналы (в номенклатуре AVR, для получения точного названия сигналов обратитесь к технической документации микросхемы, с которой работаете):

  • MISO (master in slave out) — вход ведущего, выход ведомого
  • MOSI (master out slave in) — выход ведущего, вход ведомого
  • SCK (serial clock) — сигнал тактирования
  • SS (slave select) — сигнал выбор ведомого.

Несмотря на то, что интерфейс называется 4-х проводным, для подключения нескольких ведомых понадобится по одному проводу SS для каждого ведомого (в полнодуплексной реализации). Сигналы MISO, MOSI и SCK являются общими для всех устройств на шине. Ведущий посылает сигнал SS для того ведомого, обмен данными с которым будет осуществляться. Простыми словами, все ведомые, кроме выбранного ведущим будут игнорировать данные на шине. SS является инверсным (active-low), что означает что ведущему необходимо прижать эту линию для выбора ведомого.

Видео:Передача данных - шина SPIСкачать

Передача данных - шина SPI

Подключение:

Видео:MCP2515, контроллер CAN шины с интерфейсом SPIСкачать

MCP2515, контроллер CAN шины с интерфейсом SPI

SPI на Arduino:

Arduino UNO/Piranha UNO/Arduino ULTRA

На Arduino UNO/Piranha UNO/Arduino ULTRA выводы аппаратного SPI расположены на 10, 11, 12 и 13 выводах, а так же эти выводы соединены с колодкой ICSP (in circuit serial programmer):

Шина spi для ардуино

СигналВывод
SS10
MOSI11
MISO12
SCK13

Arduino MEGA

На Arduino MEGA выводы аппаратного SPI расположены на 50, 51, 52 и 53 выводах, а так же эти выводы соединены с колодкой ICSP (in circuit serial programmer):

Шина spi для ардуино

СигналВывод
SS53
MOSI51
MISO50
SCK52

Пример для Arduino

В этих примерах мы соединим две Arduino по SPI по следующей схеме:

Шина spi для ардуино

В одну плату необходимо загрузить скетч ведущего, а в другую скетч ведомого. Для проверки работы необходимо открыть проследовательный монитор той платы, в которую загружен скетч ведомого.

Arduino UNO в качестве ведущего:

Arduino UNO в качестве ведомого:

После соединения двух Arduino по SPI и загрузки соответствующих скетчей, мы будем получать следующее сообщение в мониторе последовательного порта ведомого микроконтроллера раз в секунду:

Видео:Лекция 307. Интерфейс SPIСкачать

Лекция 307. Интерфейс SPI

SPI на Raspberry Pi

На Raspberry Pi выводы аппаратного SPI расположены на выводах GPIO7, GPIO8, GPIO9, GPIO10, GPIO11:

Шина spi для ардуино

Перед работой с SPI необходимо его включить. Сделать это можно из эмулятора терминала командой sudo raspi-config -> Interfacing options -> Serial -> No -> Yes -> OK -> Finish или из графической среды в главном меню -> Параметры -> Raspberry Pi Configuration -> Interfaces -> SPI

Подробное описание как это сделать можно посмотреть по ссылке Raspberry Pi, включаем I2C, SPI

Пример работы с SPI на Python:

В отличие от Arduino для Raspberry не существует простых решений для работы в режиме ведомого. Подробней ознакомиться с работой чипа BCM Raspberry можно в технической документации на официальном сайте, стр. 160.

Для проверки работы сценария можно подключить Raspberry по SPI к Arduino со скетчем из примера выше через преобразователь уровней или Trema+Expander Hat:

Шина spi для ардуино

Видео:Теория и практика UART, I2C (TWI), SPI на arduino.Скачать

Теория и практика UART, I2C (TWI), SPI на arduino.

Подробнее о SPI

Параметры

Существуют четыре режима работы SPI, зависящие от полярности (CPOL) и фазы (CPHA) тактирования:

РежимПолярностьФазаФронт тактированияФронт установки бита данных
SPI_MODE000СпадающийНарастающий
SPI_MODE101НарастающийСпадающий
SPI_MODE210НарастающийСпадающий
SPI_MODE311СпадающийНарастающий

В Arduino IDE для установки режима необходимо передать функции, возвращающей объект настроек параметр режима работы SPI_MODE, например:

Для выбора режима работы SPI на Raspberry Pi необходимо вызвать дескриптор объекта SpiDev().mode и присвоить ему битовые значения CPOL и CPHA, например:

Скорость передачи данных

Скорость передачи данных устанавливается ведущим и может меняться «на лету». Программист в силах указать лишь максимальную скорость передачи данных.

Видео:arduino spiСкачать

arduino spi

Подключаемое железо, интерфейсы

Шина spi для ардуино

Суть и вообще предназначение Ардуино состоит в быстрой и удобной разработке электронных устройств. Это универсальный контроллер, на базе которого можно сделать законченный девайс (от англ. Device – устройство, прибор) абсолютно произвольного назначения, от полезного (часы-будильник, реле времени с кучей настроек и дисплеем, автоматизацию теплицы, умный дом…) до бесполезного, но забавного или интересного (самонаводящийся вентилятор, машинка на радиоуправлении с пушкой, робот с большим количеством функций и так далее). Для достижения этих целей к Ардуино подключаются различные внешние устройства, с которыми она может взаимодействовать.

Начнем с мира цифрового, в котором устройства общаются друг с другом при помощи цифровых сигналов, так называемых логических, то есть имеющих два простейших состояния: правда и ложь, да и нет, 1 и 0. В большинстве цифровых устройств эти два состояния передаются напряжением 0 и 5 Вольт, но бывает и 0 и 3.3 Вольта. Таким образом микроконтроллер по сути может измерить цифровой сигнал (что подаётся на ногу, 0 или 5 Вольт), или выдать со своей ноги 0 и 5 Вольт соответственно. Закодированный цифровой сигнал выглядит примерно вот так: скачки 0 и 5 (или 3.3) Вольт с разной продолжительностью.

Шина spi для ардуино

Совокупность правил и длин участков 5 и 0 Вольт называют интерфейсом связи.

Видео:О шине SPI и библитоеке SPI. Arduino.Скачать

О шине SPI и библитоеке SPI. Arduino.

Распиновка Nano

Шина spi для ардуино

  • GPIO – базовый порт ввода-вывода. Может читать и выдавать цифровой сигнал (только 0 и 5 Вольт).
  • PWM – может аппаратно генерировать ШИМ сигнал.
  • ANALOG – пин АЦП, аналогово-цифрового преобразователя. Может измерять напряжение.
  • UART – выводы аппаратного UART для подключения модулей с таким же интерфейсом.
  • I2C– выводы аппаратной шины I2C для подключения модулей с таким же интерфейсом.
  • SPI – выводы аппаратной шины SPI для подключения модулей с таким же интерфейсом.

Видео:🔀 Сдвиговый регистр 74HC595: ПОДКЛЮЧАЕМ ПО SPI К АРДУИНОСкачать

🔀 Сдвиговый регистр 74HC595: ПОДКЛЮЧАЕМ ПО SPI К АРДУИНО

Простые цифровые датчики

К простым цифровым можно отнести любые датчики, имеющие пин с логическим выходом, то есть напряжение на этом пине может быть только 0 или 5 Вольт в зависимости от показания датчика. Это например ИК датчик движения, кнопка, датчик линии, энкодер, а также практически все остальные датчики с пинами питания и выходом, помеченным как DO, OUT или S.

Такие модули подключаются в любые GPIO пины.

Видео:Arduino+Arduino - SPI реализация общения между 2 ардуинами по SPIСкачать

Arduino+Arduino - SPI  реализация общения между 2 ардуинами по SPI

Интерфейсы

Некоторые датчики имеют цифровой выход, но выдают не просто 0 и 5V, а передают данные по цифровому интерфейсу связи. Сигнальные пины таких датчиков могут быть подписаны как SCK, SDA, SCL, MISO, MOSI, SS и прочими аббревиатурами. Для работы с такими датчиками нужно обязательно смотреть примеры или документацию. По сути любой такой датчик можно подключить на любой GPIO пин и программно эмулировать нужный интерфейс связи, что сложно и будет отбирать лишнее процессорное время. Arduino Nano поддерживает несколько интерфейсов аппаратно, то есть позволяет работать с ними очень быстро и эффективно.

UART – пины D0 (RX) и D1 (TX). По нему чаще всего подключаются Bluetooth, GPS и GSM модули. В общем случае поддерживает подключение только одного модуля. Пины на модуле называются обычно RX и TX. Подключение к модулю осуществляется “наоборот” – RX->TX и TX->RX, так как RX принимает сигналы (Receiver), а TX – передаёт (Transmitter). Для подключения нескольких UART модулей или одновременной работы модуля и “монитора порта” используют программный UART при помощи встроенной библиотеки SoftwareSerial.

I2C – пины A4 (SDA) и A5 (SCL). Данный интерфейс является шиной, то есть к нему можно подключить параллельно сразу несколько (до 128) устройств с уникальными адресами.

Варианты маркировки и подключение к аппаратному I2C:

  • A4SCL (C, SCK) – линия синхронизации, Serial CLock

Шина spi для ардуино

SPI – пины D11 (MOSI), D12 (MISO) и D13 (SCLK), иногда добавляется D10 (SS). Данный интерфейс также является шиной, причём высокоскоростной, и поддерживает подключение по сути неограниченного количества модулей: у модуля есть пин CS (Chip Select), который прижимается микроконтроллером к GND для выбора данного модуля в качестве устройства приёма и передачи данных в текущий момент. SPI – очень распространённый и простой интерфейс, очень часто датчики и модули подключают к любым GPIO пинам и используют программную отправку и приём данных через встроенные функции shiftIn() и shiftOut(). “Сложные” датчики и датчики с большим объёмом и высокой скоростью передаваемых данных (карта памяти, NFC модуль) нужно подключать к аппаратной шине SPI микроконтроллера.

Варианты маркировки и подключение к аппаратному SPI:

  • D11MISO (SDO, DO, DON, SO) – линия данных от модуля к Ардуино
  • D13SCLK (SCK, CLK, SPC) – линия синхронизации
  • D10CS (SS, RCK) – выбор текущего модуля прижатием этого пина к GND

Шина spi для ардуино

Другие

Помимо этих трёх популярных интерфейсов существуют и другие (CAN, 1-wire и прочее), но так как у нас есть сила микроконтроллера, мы можем эмулировать практически любой протокол и интерфейс связи, так называемый software (softwareSerial, softwareI2C…). И тут на помощь приходит комьюнити ардуино, которое уже написало библиотеки для всего что можно, и можно без проблем общаться практически с любой железкой, поддерживающей какой-либо популярный протокол связи. По той же CAN шине можно подключиться к мозгам своего автомобиля и делать с ним всякое. Куча микросхем различного назначения без особых проблем и телодвижений подключаются к ардуино и позволяют собой управлять. Всяческие усилители, драйверы, сдвиговые регистры, ЦАПы, АЦПы, мультиплексоры, цифровые резисторы и сотни других интересных штук.

Видео:Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч2)Скачать

Видеоуроки по Arduino. Интерфейсы SPI (8-я серия, ч2)

Аналоговый сигнал

Второй тип связи – аналоговый, работает только “на приём”. Микроконтроллер может измерять напряжение, которое подаётся ему на АЦП (аналогово-цифровой преобразователь), диапазон измерения ограничен вплоть до опорного напряжения или напряжения питания микроконтроллера, то есть максимум, что может измерить микроконтроллер без дополнительного железа – от 0 до 5 вольт, или от 0 до 3.3 вольт для 3.3 вольтовых моделей. К этому мы ещё вернёмся.

Благодаря наличию АЦП (чтение аналогового сигнала) ардуино может считывать показания любых аналоговых датчиков: термисторы, термопары, фоторезисторы, потенциометры, напряжение шунта и прочее прочее из мира аналоговой электроники. По сути можно подключить всё что угодно без особых навыков, было бы желание и готовая библиотека. Ну и умение читать.

К аналоговым относятся модули и датчики, сигнал с которых выходит в виде напряжения от 0 до 5 Вольт, но меняется “плавно” в зависимости от показания с датчика. Это например микрофон, термистор, фоторезистор, датчик влажности, потенциометр и прочее. Многие аналоговые датчики имеют пины, подписанные так же, как цифровые. Как отличить цифровой датчик от аналогового? Либо по описанию, либо методом “тыка” – подключить в аналоговый пин и вывести сигнал. Некоторые модули имеют цифровой и аналоговый выход одновременно (датчики звука, линии, холла и некоторые другие), пины у них обычно подписаны как DO – цифровой выход и AO – аналоговый. Также аналоговый выход может быть маркирован как OUT или S.

Такие модули подключаются в любые ANALOG пины.

Видео:AVR 38# Последовательный интерфейс SPIСкачать

AVR 38# Последовательный интерфейс SPI

Резюмируя

Теперь по сути дела: датчики, их куча кучная, измерять можно ну просто всё, что вообще измеряется. Электроника: напряжение, ток, сопротивление, работа с переменным током, поля. Параметры микроклимата: температура, влажность, давление, содержание газов, скорость ветра, освещенность, что угодно. Интересных модулей тоже очень много: Bluetooth, сотовая связь, GPS, дисплеи различных типов и размеров, датчики присутствия, как ИК, так и микроволновые, модули для беспроводной связи ардуинок и многое другое.

Можно управлять абсолютно любой железкой, которая выполняет свою функцию просто при подаче питания: лампочка, светодиодная лента, электронагреватель, мотор или любой электропривод, электромагнит, соленоид-толкатель, и это все с любым напряжением питания. Но тут нужно кое что понять: Ардуино (точнее микроконтроллер) – логическое устройство, то есть по-хорошему она должна только отдавать команды другим устройствам, или принимать их от них. Это я к тому, что напрямую от ардуино не работают ни лампочки, ни моторчики, ни нагреватели, ни- ху че-го. Максимум – светодиод. С пониманием этого идём дальше. Чтобы ардуино включила или выключила (подала питание) на другое устройство, нужно устройство – посредник, например реле или транзистор. Ардуино управляет реле, а реле в свою очередь включает любую нужную нагрузку с любым напряжением питания и все такое, подробнее об этом поговорим отдельно.

Как суть всего выше написанного – возможности Ардуино по подключению и управлению различными железками практически безграничны, можно воплотить любую идею, даже самую безумную. Датчики что то измеряют, исполнительные устройства что то контролируют, в это же время ведётся отсылка данных куда-нибудь, что-то отображается на дисплее и контролируется при помощи кнопок. Романтика!

У меня в каталоге ссылок на Ардуино-компоненты можно найти практически все существующие датчики, модули и прочие железки для Ардуино, и практически у каждого есть ссылка на статью с примером и библиотекой. Пользуйтесь!

🌟 Видео

ЛУЧШИЙ ЭКРАН ДЛЯ АРДУИНО ARDUINO TFT LCD 1.44 SPI 128Х128 ЗА $3!Скачать

ЛУЧШИЙ ЭКРАН ДЛЯ АРДУИНО ARDUINO TFT LCD 1.44 SPI 128Х128 ЗА $3!

Подключить несколько устройств к Ардуино по шине SPIСкачать

Подключить несколько устройств к Ардуино по шине SPI

STM32.ARDUINO.SPI I2C PROTOCOLSСкачать

STM32.ARDUINO.SPI I2C PROTOCOLS

ЛУЧШИЙ ЭКРАН ДЛЯ АРДУИНО ARDUINO TFT LCD 1.8 SPI 128Х160Скачать

ЛУЧШИЙ ЭКРАН ДЛЯ АРДУИНО ARDUINO TFT LCD 1.8 SPI 128Х160

Arduino Интерфейсы SPI 8Скачать

Arduino Интерфейсы SPI 8

SegM8 — семисегментный светодиодный индикатор для Arduino с SPI на борту. Железки АмперкиСкачать

SegM8 — семисегментный светодиодный индикатор для Arduino с SPI на борту. Железки Амперки

💡 Arduino - Экраны #2 - Электронная бумага и SPI шина - EP7Скачать

💡 Arduino - Экраны #2 - Электронная бумага и SPI шина - EP7

Введение в шину I2CСкачать

Введение в шину I2C

LCD дисплей LCM1602A-14, I2C и SPIСкачать

LCD дисплей LCM1602A-14, I2C и SPI
Поделиться или сохранить к себе:
Технарь знаток