Почти каждый автолюбитель хоть иногда задавался вопросом: вулканизация шин — что это такое? И действительно, далеко не многие знают, как именно происходит данный процесс, в результате каких химических реакций осуществляется вулканизация.
Видео:Китайские шины без резиныСкачать
Вулканизированная резина: что это такое
Вулканизация резины — это довольно интересная процедура, так как в качестве вулканизирующих агентов выступает немало химических соединений. Основным элементом данной структуры является каучук. Именно он преобразовывается в резину вследствие технологического процесса вулканизации.
Это химическая реакция, которая представляет собой превращение сырого каучука в вулканизационную сетку, благодаря присоединению к нему иных химических соединений. При этом у каучука улучшается твердость, эластичность, устойчивость к высоким и низким температурам.
Применение таких веществ, как каучук и сера в процессе вулканизации называется серной вулканизацией. Именно атомы серы способствуют образованию межмолекулярных поперечных связей. Смесь нагревают до 160 °. Когда процент добавленной серы не превышает 5 %, то получается мягкий вулканизат. Из него изготавливают камеры, покрышки, резиновые трубки и т. п. А если добавляется больше 30 % серы, то получается жесткий эбонит.
Таким способом можно получить эластомер, который будет невероятно стойким к химическим и термическим воздействиям.
Весь процесс вулканизации можно разделить на несколько этапов:
- Вулканизируемый состав помещают в формы.
- Формы устанавливают между нагретыми плитами гидропресса.
- Смесь нагревают до определенной температуры.
- Неформовые изделия засыпаются в автоклавы либо котлы и тоже поддаются нагреву.
Видео:Вот вам и китайская резинаСкачать
Горячая вулканизация
Такой метод чаще всего используется для устранения боковых порезов на автошине, которые больше 1 см. Именно на горячую получается добиться более надежного скрепления резины. Данный способ считается одним из самых прочных среди всех известных. Горячее склеивание имеет массу плюсов:
- процедуру можно делать даже зимой;
- изделие будет склеено даже если имеет загрязнения;
- пользоваться шиной можно сразу после процедуры;
- материалы дешевле, чем для холодной склейки.
В первом случае происходит следующее:
- Поврежденное место зачищается фрезой.
- Укладывается вязкая резина.
- Дыра заполняется кусками холодной резины.
- Специальным прессом производится нагрев и сваривание компонентов.
Двухэтапная проходит следующим образом:
- Порез зачищается и вулканизируется.
- Накладывается заплатка на место повреждения.
- Поврежденные места склеиваются прессом.
Такой способ более плотно закрывает порез и обеспечивает хорошее затвердевание резины.
Видео:Что внутри китайской и европейской шины? Пилим - и сравниваем!Скачать
Технология и время вулканизации сырой резины
Время вулканизации сырой резины — примерно 4 минуты на каждый миллиметр толщины. При этом по 30 минут дается на прогрев промежуточных подушек. Так, например, профессионалы могут отремонтировать шину за пару часов. Если речь идет о грузовой покрышке, то продолжительность ремонта может затянуться до 4 часов. Этапов обработки и склеивания пореза несколько:
- Пространство вокруг повреждения зачищается фрезой.
- Резиновая крошка сдувается, поврежденное место обрабатывается с обеих сторон специальным составом.
- Соответствующая по размеру заплатка устанавливается с внутренней стороны шины.
- Снаружи порез заполняется сырой резиной, которую заранее подогревают для лучшей пластичности.
- Каучук прижимают к шине и выравнивают, он должен выступать на 3-5 мм.
- Горячим прессом производится склейка поврежденного участка.
Видео:КИТАЙСКИЕ ШИНЫ /// которые можно братьСкачать
Холодная склейка
Именно хороший клей в силах склеить резину так, как бы это сделала горячая вулканизация. Но стоит отметить, что данный способ является временным ремонтом. Его можно сделать самостоятельно при поломке в дороге и доехать так до ближайшей СТО. А там уже произвести склеивание на горячую. Если такая ситуация случилась в пути, то нужно произвести следующие манипуляции:
- Снять колесо и осмотреть повреждение.
- Очистить и обезжирить место склейки
- Нанести клей на заплатку и поврежденное место.
- Придавить заплатку к резине и подержать некоторое время.
- Накачать колесо и ехать на СТО.
Читайте также: Ситроен с4 седан давление шин
Также эффективному склеиванию поддаются повреждения не более 35 мм (продольные) и 25 мм (поперечные). Холодная вулканизация схватывается около 30 минут. После этого только можно ехать. Но тут все зависит от величины пореза, холода либо жары, а также от качества клея. Полное высыхание материала наступает через двое суток. Такой способ очень хорошо подходит для устранения мелких порезов и проколов.
Видео:Завод Gislaved под Калугой. Как делают шины премиум-сегментаСкачать
Вулканизатор для шин своими руками
Его можно сделать даже собственными руками, имея смекалку и умелые руки. Изготовить агрегат можно:
- из бытового утюга;
- из электроплитки;
- из поршня от двигателя авто.
Если использовать утюг, то его подошва будет служить нагревательным элементом. Идеальным будет прибор, имеющий терморегулятор. В качестве пресса может выступать струбница. Для такого вулканизирующего устройства понадобится минимум затрат денег и материала.
Поршневой вулканизатор станет незаменимым помощником, если прокол шины случился в пути, а под рукой нет никаких специальных материалов для вулканизации и розетки. Такой агрегат работает по следующей схеме:
- Камера укладывается на ровной металлической поверхности.
- Поврежденный участок прижимается днищем поршня и плотно фиксируется.
- Между резиной и металлом укладывается бумага.
- Рядом с поршнем рассыпается песок (чтобы бумага не горела).
- В поршень заливается бензин и поджигается.
Произвести самодельную вулканизацию вполне возможно, но лучше, если эту работу сделают профессионалы на СТО. Данная процедура не займет много времени, да и стоит недорого.
Видео:Какого каучука в шинах Пирелли больше: натурального или синтетического?Скачать
Идеальное колесо
В чем секрет химической устойчивости автомобильных шин
Шины — удивительный объект с точки зрения химии и материаловедения. Наверное, самое странное в них заключается в том, что если взять всю резину в одной шине, то окажется, что она образует одну огромную молекулу. С другой стороны, мало кто задумывается над тем, что резина составляет меньше половины массы обыкновенной шины. А почему так? И что еще входит в состав шин помимо резины? На эти вопросы мы ответим в нашем материале, созданном в партнерстве с производителем шин Toyo Tires.
Магический треугольник
Создание идеального колеса — сложнейшая задача оптимизации, к которой человечество идет уже сотни лет. К колесу предъявляется огромное количество требований, но есть три самых главных («магический треугольник»): высокое сцепление с дорогой, низкое трение качения и маленький износ. Шина на пути к этому идеальному колесу появилась не так давно — всего лишь в XIX веке.
Сцепление с влажной поверхностью позволяет колесам катиться по дороге без проскальзывания и быстрее тормозить. За сцепление отвечает рисунок протектора, а также сама поверхность шины и ее химические и адгезионные свойства.
Трение качения — это сила, которая сопротивляется вращению колеса. Вообще говоря, потери на трение качения возникают из-за неупругих деформаций колес. Чем сильнее эти потери, тем больше топлива надо на то, чтобы проехать те же самые сто километров (закон сохранения энергии никто не отменял).
Износ шины — самая простая и интуитивно понятная из этих величин. Во время езды колесо подвергается миллионам сжатий и растяжений, и каждое медленно, но неумолимо разрушает материалы, из которых оно сделано. Чем больше таких циклов сжатия и растяжения колесо сможет выдержать, тем дольше оно прослужит.
Читайте также: Стойка для бескамерных шин
Обретение вулканизации
В 1830-х годах американский изобретатель и химик Чарльз Гудьир экспериментировал с каучуком, природным полимером, содержащемся в соке гевеи. На тот момент различные компании уже пытались использовать каучук. Например, Чарльз Макинтош пропитывал им ткани для изготовления непромокаемых плащей, а сам Гудьир участвовал в разработке трубок для надувания спасательных плавсредств. Из каучука также делали ластики для карандашей.
Однако серьезный недостаток натурального каучука состоит в том, что он быстро портится при контакте с воздухом: окисление полимера делает материал хрупким, легко поддающимся разрушению. Над тем, чтобы избавить его от этого качества, и работал американский химик.
Сейчас понятно, что нестойкость каучука связана с самой структурой полимера. Каучук — это цис-полиизопрен, как и многие органические полимеры его можно представить себе как цепочку из углеродных атомов, на которую, с определенным шагом, навешены небольшие группы из других атомов.
От крайне стойкого к окружающим воздействиям полиэтилена или полипропилена каучук отличается тем, что некоторые связи между атомами углерода в его основной цепочке — двойные. Именно они являются слабым местом природного каучука. Кислород (точнее, его активные формы) способен легко атаковать эти кратные связи и разрушать их, сильно меняя при этом свойства материала в целом.
В 1839 году Гудьир обнаружил, что нагретая печью смесь каучука с серой превращается в необыкновенно плотный черный эластичный материал, гораздо более устойчивый по сравнению с исходной легкоплавкой полимерной массой. Некоторые свидетельства указывают на то, что это открытие было сделано случайно — якобы химик попросту уронил каучуковый шарик с серой на печь. Но с другой стороны, известно, что Чарльз Гудьир изучал возможность обезвоживать каучук серой. Так или иначе химику удалось открыть процесс вулканизации.
С точки зрения химии суть этого процесса заключается в преобразовании части тех самых двойных связей в цепях каучука. Сера способна точно так же, как и кислород, атаковать их, но вместо полного разрушения в случае серы образуются так называемые сульфидные мостики — прочные связи, соединяющие между собой соседние цепочки каучуков и образующие сетчатую структуру. Полимер становится более упругим и плотным, при этом уменьшается количество «слабых мест» в его структуре.
В пределе можно считать, что все молекулы каучука в вулканизированном образце оказываются связаны в единую молекулу этими сульфидными мостиками.
Победоносный путь каучука
В 1888 году британский ветеринар Джон Данлоп создал и запатентовал шину из вулканизированного каучука — для велосипеда своего сына. По сути, она представляла собой надутый шланг, закрепленный на ободе колеса.
В 1895 году первые шины из вулканизированной резины были установлены на автомобиле, участвовавшем в гонке Париж-Бордо-Париж. Авторы идеи — Андре и Эдуард Мишлен. К сожалению, гонку машине выиграть, мягко говоря, не удалось, но тем не менее автомобиль справился с почти 1200 километрами трассы.
Одновременно с ростом популярности автомобилей росло и потребление шин — так за пару десятков лет возникла новая огромная промышленность.
Почему вулканизированный каучук стал таким удобным материалом для колес? В первую очередь, это определяется той самой тройкой свойств — сцепление с поверхностью, трение качения и износ. Благодаря эластичности шина из резины обеспечивает плотное сцепление даже с неровной дорогой, к тому же отсутствие хрупких элементов уменьшает износ по сравнению с металлическими или тем более деревянными колесами.
Читайте также: Шины для нфс мост вантед
Стоит заметить, что резиновые шины во многом хороши для обычных дорог, но если мы сменим типичное асфальтовое покрытие на стальные рельсы, то ситуация радикально поменяется. Стальные колеса обладают гораздо меньшим трением качения — оно в 5, а то и в 10 раз меньше, чем у современных автомобильных шин. Сцепление стальных колес с поверхностью определяется во многом весом поезда, для легких автомобилей такой подход не подойдет.
Но можно вспомнить, что резиновые шины используются и на поездах, к примеру на линии M2 метро Лозанны (Швейцария). Там они позволяют бороться с высокой крутизной путей, которая в другой ситуации потребовала бы наличия зубчатой передачи.
Не каучуком единым
С точки зрения механических свойств каучук очень хорош — до сих пор нет дешевых искусственных аналогов, обладающих теми же свойствами. Никакого секрета в этом нет — цепочки природного каучука устроены так, что все боковые «висят» строго по одну сторону от цепи. Добиться того же в промышленном синтезе каучука практически невозможно — тот контроль над сборкой цепи, который обеспечивают сложные ферменты растений, не могут повторить сравнительно более простые металлорганические катализаторы Циглера-Натта.
Но есть и недостатки, причем химической нестабильностью природного каучука они вовсе не ограничиваются. Выращивают каучуконосные культуры в основном в Юго-Восточной Азии и Бразилии, к тому же сырьевая база ограничена и едва ли покрывает весь спрос на каучуки.
Поэтому в шинах доля природного каучука составляет всего около 10-15 процентов, еще около 20 процентов приходится на искусственные полимеры — полиизопрен, полибутадиен, сополимеры полибутадиена с полистиролом и с полиизобутиленом. Главное преимущество искусственных каучуков заключается в относительно большей устойчивости к окислению и ультрафиолетовому излучению.
К нерезиновой части шины относятся стальные корды и всевозможные наполнители: сажа, диоксид кремния (основной компонент стекла и песка) и антиоксиданты. Роль антиоксидантов заключается в том, чтобы «отлавливать» опасные для каучуков и других полимеров активные формы кислорода (например, озон или перекись) и превращать их в безвредную воду или другие молекулы. Кроме того, в шинах остаются различные активаторы вулканизации, например оксид цинка.
Точно спрогнозировать, как различные добавки влияют на свойство шин, достаточно сложно. Для этого необходимо моделировать поведение микро- и наноразмерных частиц, а также окружающих их полимерных цепей и сетей на наноуровне. Компания Toyo Tires впервые в шинной отрасли воспользовалась методами молекулярной динамики, чтобы предсказать энергетические потери в шине по ее микроструктуре.
Грубо говоря, специалисты компании способны оценить, как сильно нагреется шина от наезда на неровность на дороге. Это помогает понять, как уменьшить этот нагрев. Например, расчеты показывают, что подавление физического перемещения молекул резины снижает те самые энергетические потери в шинах. Поэтому в шинах необходимо добиваться более прочных связей между молекулами полимеров и наполнителем.
Интересно заметить, что методы молекулярной динамики часто применяются для прогнозирования поведения белковых молекул и поиска новых лекарств.
Эта и другие разработки Toyo Tires, связанные со строением шины на наноуровне, являются частью технологии Nano Balance, которая, по своей сути, позволяет спроектировать материал с требуемыми оптимальными свойствами, а затем создать его и испытать.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
🔍 Видео
Трещины на шинах, какие последствия ?Скачать
«Как это работает СИНТЕТИЧЕСКАЯ РЕЗИНА»Скачать
Азот ВАМ в ШИНЫ! А НАДО ЛИ? 5 основных МИФОВСкачать
УЗНАВ ЭТО ТЫ БОЛЬШЕ НИКОГДА НЕ ПОСТАВИШЬ ТАКИЕ ШИНЫ НА АВТОСкачать
Адгезия и диффузия при вулканизации шины. Углерод и каучук. Состав резиновой смеси. Почему это важноСкачать
Натуральный каучук из корней одуванчика. Шина будущего Continental на 4 точки. Шины и диски 4точкиСкачать
ШИНЫ, РТИ И КАУЧУКИ 2022Скачать
КАК СОЗДАЮТ ШИНЫ? Показываем этапы производства на заводе шин Continental в Калуге : )Скачать
ПОЧЕМУ УЗКИЕ ШИНЫ - другие?Скачать
СПОРТИВНЫЕ ПОКРЫШКИ (опыт №5) ACRGСкачать
Какие шины выбрать на грядущую зиму?Скачать
Шины из одуванчиков: Германия возвращается к производству каучука из сорняка (новости)Скачать
Широкие и узкие шины | Преимущества и недостатки | Отвечаем на вопросы подписчиковСкачать
✅ САМЫЕ ИЗНОСОСТОЙКИЕ ШИНЫ! И КАКИЕ ШИНЫ БЫСТРО СТИРАЮТСЯ! В 2019ом!Скачать