- Уникальные проходимцы
- Исторический экскурс
- Советский опыт
- Шины для самолетов. Давление в шинах самолета.
- Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии
- Амортизационные стойки
- Сложная высокотехнологическая структура
- Высокое давление
- Индекс прочности шины
- Статические и динамические тестовые проверки
- 📺 Видео
Уникальные проходимцы
Шины сверхнизкого давления или пневмокатки – это настоящая находка для преодоления тяжёлых дорожных условий. Точнее, даже не дорожных условий, а направлений по пересечённой местности. Важнейшим достоинством огромных шин является низкое удельное давление на грунт (0,2 — 0,7 кгс/см 2 ) и, следовательно, щадящее воздействие на хрупкий почвенный слой тундры. Подобные машины не закапываются по уши в снегу и не уходят в глубины болотной трясины. Собственно, поэтому такая техника и называется снегоболотоходами. В случае оснащения транспорта штатными системами централизованной подкачки шин, опорная проходимость увеличивается кратно. Поспорить со снегоболотоходами по «внедорожности» может только техника с нетрадиционными движителями – судна на воздушной подушке или шнекороторные вездеходы. Снегоболотоход на спущенных колёсах буквально обнимает шинами немаленькие препятствия – пни, брёвна и валуны. Достигается это, помимо низкого давления (0,2 — 1,0 кгс/см 2 ), за счёт малого посадочного диаметра пневмокатка, тонкого каркаса и большой ширины профиля. Аналогичным образом ведут себя прообразы шин сверхнизкого давления – арочные шины. Особенно популярны они стали по второй половине прошлого столетия. К примеру, проходимость двухосного ЗИЛ-164 с арочными шинами на задней оси становилась равной проходимости трёхосного ЗИЛ-151.
Наличие огромных колёс на транспортном средстве обуславливает и большое водоизмещение. Другими словами, автомобили на шинах сверхнизкого давления нередко способны плавать – роль поплавков играют колёса. Кстати, шины на воде за счёт большого диаметра и развитых грунтозацепов неплохо справляются с ролью гребных винтов. В среднем они позволяют разогнаться на воде до 3 км/ч, для больших скоростей требуются уже водомёты или винты.
На этом положительные стороны шин сверхнизкого давления не заканчиваются. Большой диаметр колеса естественным образом значительно увеличивает дорожный просвет – у некоторых современных машин он может превышать 750 мм. Благодаря мягким шинам с большим профилем инженеры в ряде случаев обходятся на снегоболотоходах без подвески. Конечно, на больших скоростях и в условиях бездорожья отсутствие амортизаторов может обернуться опасным козлением, но подобная техника и не предназначена для ралли-рейдов. Даже по твёрдым покрытиям максимальная скорость не превышает 70 км/ч.
Самое интересное, что за счёт низкого давления внутри шины воздух в случае прокола не особенно интенсивно травит, и это легко компенсирует система подкачки. Очень хороший бонус для техники военного назначения. Неспроста именно армейские водители одними из первых попробовали в деле «суперпроходимцев» на мягких шинах.
Исторический экскурс
Теоретически создать машину на пневмокатках несложно. Для этого достаточно мотоцикла или легковушки, у которых штатные колёса заменяются на использованные камеры от грузовых автомобилей, самолётов и тракторов. Получаются своеобразные внедорожники, получившие в народе забавные прозвища – каракаты, тундролеты, дутики и т. д. Для увеличения сцепных свойств импровизированные пневмокатки оснащаются поперечными ремнями с наклёпанными грунтозацепами, а для повышения эксплуатационной живучести – дополнительной оболочкой из разрезанной по образующей такой же камеры, используемой как покрышка.
На промышленном уровне одними из первых освоили шины сверхнизкого давления на своей продукции автомобильная компания FWD из США. В 1955 году инженеры фирмы построили опытный транспортёр ХМ357 Terracruzer c восемью пневмокатками фирмы Goodyear с внутренним давлением 0,2 — 0,35 кгс/см 2 . Передача крутящего момента и вертикальной нагрузки осуществлялась при помощи валков. Отличительной чертой машины было фактическое отсутствие дорожного просвета – здоровенные пневмокатки занимали почти всю ширину грузовика. Общая масса грузовой машины составляла 19 тонн, из которых девять отводились на полезную нагрузку. Первоначально разработанный для нужд армии США опытный вездеход отправили для испытаний на главное место службы – в Гренландию. В суровых условиях крайнего Севера опытная машина повела себя не лучшим образом и постоянно досаждала чрезмерным износом шин. Кроме того, передача крутящего момента через валки обнаружила серьёзные потери мощности и, как следствие, низкий к.п.д. В итоге инженеры решили пойти традиционным путём – передавать мощность к движителю через ось. Новая машина Terracruzer MM-1 так же была оснащена восемью колёсами с шинами Rolligon несколько меньшей ширины, сгруппированными по двум тележкам.
Гражданские вариации на тему FWD Terracruzer. Источник: 3w.su
Полноприводному грузовику определили основное предназначение – таскать на себе американские ракеты по труднопроходимой местности. Для этой цели служил восьмицилиндровый мотор Continental воздушного охлаждения, работающий на авиационном бензине с октановым числом 145, и 4-ступенчатый гидротрансформатор. У внедорожника-снегоболотохода была регулируемая подвеска, позволяющая преодолевать подъёмы в 60 %, и система централизованной подкачки колёс с диапазоном регулировки 0,35 — 0,9 кгс/см 2 . Максимальная скорость гиганта достигала 64 км/ч. Между тележками в трансмиссии был установлен симметричный блокируемый дифференциал, а привод к колёсам осуществлялся при помощи косозубых шестерён, расположенных внутри полых балансиров. Маневрирование тягача осуществлялось поворотом передней тележки при помощи гидроусилителя. Тормоза были авиационного типа с гидроприводом.
В дальнейшем американцы строили для военных, а также для геологов, работников сельского хозяйства и строителей множество сверхпроходимой техники на пневматиках. Самым, наверное, курьёзным агрегатом стал прицеп фирмы FWD, оснащённый четырьмя пневмокатками диаметром 1625 мм и шириной 1070 мм. В этих шинах инженеры предлагали перевозить по 1900 литров жидкого груза – топливо, масла и другие технические жидкости. Кроме этого, прицеп имел платформу грузоподъёмностью 2,72 тонны.
Советский опыт
Советский Союз, обладающий бескрайними просторами, напрочь лишёнными дорожного полотна, также оказался среди пионеров снегоболотоходного транспорта. Головным разработчиком выступал профильный институт НАМИ, который в 1958 году построил опытный НАМИ-044э с колёсной формулой 4х4. Первоначально на небольшой грузовичок, напоминающий трактор, устанавливали арочные шины, а в 1959 году проявились широченные пневмокатки с системой регулирования давления.
Читайте также: Переработка шин в набережных челнах
Очевидно, под впечатлением от заморского Terracruzer MM-1 в НАМИ создали очень напоминающий его вездеход ЭТ-8 образца 1961 года. У опытной машины были межтележечный и два межбортовых дифференциала, а также приводная шестерёнчатая гитара в пустотелом балансире. Подвески как таковой у ЭТ-8 не было. Поворот передней тележки осуществлялся гидроусилителем от МАЗ-525, установленном на погонном устройстве. ЭТ-8 разрабатывали грузоподъёмностью 8 тонн, а удельное давление на грунт составляло 0,4 — 0,9 кг/см, что сопоставимо с гусеничными движителями. Каждое колесо И-245 обеспечивало контакт с грунтом площадью около одного квадратного метра. Опытный грузовик 8х8 оснащался системой регулировки давления в шинах.
Для удешевления производства машины некоторые узлы заимствовали от серийной техники. Так, кабина пришла от среднего артиллерийского тягача АТС, а мотор взяли карбюраторный ЗИЛ-375 мощностью 180 л. с. – позже он появится на машинах Урал. Испытания ЭТ-8 показали, что внедорожник отлично справляется с вязкими грунтами, заболоченной луговиной и болотами, сохраняя при этом тягу на крюке до 9 тонн! Для 50-60-х годов ни одно колёсное транспортное средство не могло похвастаться подобной проходимостью – сравнивать ЭТ-8 можно было только с гусеничной техникой. При этом ресурс гусеничного движителя не превышал 4-7 тысяч километров, в то время как пневмокатки могли работать и 30 тысяч.
Несмотря на очевидные преимущества, опытный снегоболотоход от НАМИ не заинтересовал военных, хотя на Западе подобные машины FWD стали родоначальниками целого семейства.
Видео:Сравниваем шины низкого давления Авторос и "ободрыши" на Бирюк БРОСкачать
Шины для самолетов. Давление в шинах самолета.
Современная авиационная шина – сложная высокотехнологическая структура, разработанная для работы с огромными скоростями и нагрузками при максимально возможном весе и размерах. Несмотря на это, шина – один из наименее понимаемых и наиболее недооцененных элементов самолета. Каждый согласится с тем, что они «грязные, черные и круглые». Но в реальности авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла. Углубившись в материалы компонента детальнее, можно увидеть различные типы резиновых смесей и нейлоновых кордов. Они имеют свои особые свойства для успешного выполнения поставленных задач.
Все авиационные шины можно разделить на 2 категории:
низкоскоростные (рассчитаны на наземную скорость самолета до 192 км/час);
высокоскоростные (наземная скорость – более 192 км/час).
Перед установкой шины на колесо самолета над ней проводится целый ряд испытаний.
Эти тестовые проверки разделяют на статические и динамические.
Статические
1.Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
2.Определение давления посадки шины на обод колеса. Один из методов – копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
3.Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
4.Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.
Динамические
1.Поправка давления. Выполняется учет влияния кривизны барабана.
2.Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д.
Как проводится замена шин у реактивного самолета
Авиационные шины вызывают восхищение в воздухе и гарантируют безопасность на земле. Но посадки и взлеты негативно отражаются на их состоянии.
За год самолет проезжает по земле расстояние, равное 8 тыс. километров, выполняя рулежки, маневрируя, влетая и приземляясь. Контакты элементов шасси самолета с взлетной полосой сильно сказываются на износе шин. Замена шин – настоящая проблема для авиакомпаний, поскольку стоит немалых денег, но для авиаперевозчиков безопасность всегда на первом месте. Квалифицированная команда шиномонтажников обязана проводить замену за 30 минут.
Во Франкфурте расположен один из самых больших по загруженности международный аэропорт и базируется одна из крупнейших авиакомпаний – Lufthansa.
Воздушное судно подруливает на стоянку, бригада специалистов начинает работу. Начало процесса очень похоже на замену автомобильных шин, разница заключается только в том, что если в машине 4 колеса, то у самолета их целых 30. Блоки по 8 штук находятся под носовой частью и крыльями и прикреплены на т.н. тележках. Поднятие тележки проводится при помощи домкрата. Гидронасос домкрата использует давление, находящееся внутри шины.
Подняв конструкцию, бригада снимает колесо. Сначала специалист откручивает фиксирующую гайку. По умело отточенным движениям механиков видно, что работа обыденная. Цена ошибки велика и измеряется жизнями людей, которые полетят этим самолетом. Механики должны знать, когда актуально проводить замену шины. Диагностические маркеры для этого находятся в канавках протектора. Если этих индикаторов не видно – значит, шину нужно менять.
Читайте также: Перевозка шин по россии
Сняв шину, можно увидеть ее огромные размеры: ширина – 0,5 м, диаметр – 1,5 м.
Самолетные шины испытывают огромные нагрузки. Несколько часов они находятся в условиях очень низких температур, а во время посадки самолета набирают скорость до 280 км/ч. При приземлении температура шины составляет 260°С. Почему же тогда эти компоненты не взрываются в воздухе и не лопаются при контакте с покрытием ВПП?
Секрет находится внутри шины: она заполнена не сжатым воздухом, как автошина, а газом – азотом. Поэтому авиационные шины всегда сухие, без воды внутри и не могут замерзнуть. Также они не горючие.
На одно колесо у немецких механиков ушло 15 минут, и они приступают к съему следующего колеса, а «переобутое» ставят на место. Специалист внимательно проверяет затяжку болтов, ведь их ослабление грозит катастрофой.
Далее шины накачивают, опускают домкрат, проверяют, все ли болты находятся на своих местах, укрепляют их контровочной проволокой. На этом процесс замены шин заканчивается.
Видео:Тактик. Про шины.Скачать
Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии
Современная авиационная шина – сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.
При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.
Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.
За счет существенного уменьшения массы шин и одновременного увеличения количества выдерживаемых ими приземлений, снижаются эксплуатационные и топливные расходы. Как результат — уменьшение негативного влияния на окружающую среду за счет уменьшения выбросов CO2 в атмосферу и меньшего количества используемого сырья.
Видео:Самые маленькие колеса низкого давления на рынке!Скачать
Амортизационные стойки
Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колёса (пневматики).
Амортизационные стойки служат для обеспечения максимальной плавности хода при движении по аэродрому, на разбеге и пробеге, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы, в которых функцию пружинного элемента выполняет закачанный под строго определённым давлением технический азот). На многоколёсных тележках шасси тяжелых самолетов могут быть установлены также дополнительные амортизаторы — стабилизирующие демпферы. Усиленные стойки шасси способны выдержать удар о выступающие рёбра бетонных плит высотой до 10 см при движении самолета с посадочной скоростью или грубую посадку.
Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колёса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.
Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.
Диски (барабаны) колёс часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.
Видео:Обзор шин низкого давления на вездеход АрсланСкачать
Сложная высокотехнологическая структура
Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.
На современных скоростных самолётах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замёрзания на высоте, с образованием опасного льда и кроме того азот дешёв и не горит). Протекторы шин шасси самолётов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.
В целом современная авиационная шина – сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.
Авиационная шина способна выдерживать широкий диапазон условий эксплуатации. Находясь на земле, она должна поддерживать массу самолёта. Во время выруливания — обеспечивать стабильный плавный ход, сопротивляясь в то же время теплообразованию, истиранию и износу. Во время взлёта конструкция шины должна быть способна выдерживать не только нагрузку самолета, но и силы, создаваемые при высоких скоростях качения при разбеге. Посадка требует от шины поглощения колоссальных динамических ударных нагрузок. Все эти процессы должны выполняться стабильно, обеспечивая длительный и надёжный срок службы шин.
Читайте также: Шины в уфе легкогрузовые
Для этих экстремальных требований нужна достаточно сложная шина. Шина современного самолета — это композит из нескольких различных резиновых смесей (смеси натурального и синтетического каучука), текстильного материала и стали. Каждый компонент шины служит конкретной цели в реализации ее эксплуатационных характеристик. Шины самолетов очень прочные, поскольку армируются железными кордами, нейлоном, а также полимером арамид.
Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые
- поглощение кинетической энергии ударов при посадке и движении по неровной поверхности аэродрома с целью уменьшения перегрузок и рассеивание возможно большей части этой энергии для быстрого гашения колебаний;
- минимум массы конструкции при заданной прочности, жесткости и долговечности;
- минимум аэродинамического сопротивления в выпущенном положении;
- высокая технологичность конструкции.
Видео:Экономный вариант. Делаем шины низкого давления в гараже.Скачать
Высокое давление
Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.
Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.
Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.
Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.
Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.
Видео:Демонстрация эластичности шины низкого давления 1300х530-533 АрктиктрансСкачать
Индекс прочности шины
Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.
Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.
В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.
Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.
Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.
Видео:Делаем шины НИЗКОГО ДАВЛЕНИЯ УРАГАН! Строим вездеход #23. В поисках сокровищСкачать
Статические и динамические тестовые проверки
Статические
- Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
- Определение давления посадки шины на обод колеса. Один из методов – копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
- Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
- Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.
Динамические
- Поправка давления. Выполняется учет влияния кривизны барабана.
- Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д.
- Свежие записи
- Нужно ли менять пружины при замене амортизаторов
- Скрипят амортизаторы на машине что делать
- Из чего состоит стойка амортизатора передняя
- Чем стянуть пружину амортизатора без стяжек
- Для чего нужны амортизаторы в автомобиле
📺 Видео
Обзорный фильм о ассортименте шин низкого давления АВТОРОССкачать
Где я взял диски для шин низкого давления/Компания Contur Car/ОбзорСкачать
Сравнительный тест шин низкого давления Х-TRIM и МАХ-TRIM марки AVTOROSСкачать
Шины низкого давления АВТОРОС М-ТРИМ/Сборка и установка на УАЗ/Вот что нужно внедорожнику.Скачать
🚑Болотоход на шасси ГАСЗ С41А23/ ШИНЫ НИЗКОГО ДАВЛЕНИЯ НА САДКО НЕКСТСкачать
Презентация и тест новой шины низкого давления AVTOROS M-TRIM 900-450-18LTСкачать
Соболь, Каминз, 2.8. 120л.с колеса низкого давления Авторос МХ trim 1050-500-18./снег 45-60 см.Скачать
Шины низкого давления для трактора КировецСкачать
Шины низкого давления AVTOROS X-TRIM 4 слояСкачать
Вездеход на шинах низкого давления СТМ-39960Скачать
НИВА на шинах низкого давления-настоящий МОНСТР!Скачать
Изготовление конусных дисков для шин низкого давления для квадроцикла, болотохода, вездеходаСкачать
Самодельные шины низкого давления для вездеходаСкачать