Шпоночное соединение вала с шестерней

Шпоночное соединение вала с шестерней

Шпоночное соединение — один из видов соединений вала со втулкой с использованием дополнительного конструктивного элемента (шпонки), предназначенной для предотвращения их взаимного поворота. Чаще всего шпонка используется для передачи крутящего момента в соединениях вращающегося вала с зубчатым колесом или со шкивом, но возможны и другие решения, например — защита вала от проворачивания относительно неподвижного корпуса.
Более подробно о видах шпоночных соединений здесь.

В отличие от соединений с натягом, которые обеспечивают взаимную неподвижность деталей без дополнительных конструктивных элементов, шпоночные соединения – разъемные. Они позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке.

По форме шпонки разделяются на призматические, сегментные, клиновые и тангенциальные. Призматические шпонки дают возможность получать как подвижные, так и неподвижные соединения. Сегментные шпонки и клиновые шпонки, как правило, служат для образования неподвижных соединений. Форма и размеры сечений шпонок и пазов стандартизованы и выбираются в зависимости от диаметра вала, а вид шпоночного соединения определяется условиями работы соединения.

Обычно шпонки устанавливают в пазах на валу по неподвижной, а втулки — по одной из подвижных посадок. Натяг шпонки необходим, чтобы шпонка не выпадала при монтаже и не передвигалась при эксплуатации, а зазор при втулке, — чтобы компенсировать неизбежные неточности размеров, формы и взаимного расположения пазов.
В машиностроении наибольшее применение получили соединения с призматическими шпонками. Их размеры и размеры шпоночных пазов нормируются ГОСТ 23360-78 «Шпонки призматические. Размеры, допуски и посадки».
Предельные отклонения размеров призматических шпонок по ширине и высоте установлены для трех исполнений шпонок (рис. 1):

  • с закруглениями по обоим концам (А);
  • прямоугольные (В);
  • с закруглением на одном конце (С).

Шпоночное соединение вала с шестерней

Рис. 1. Виды исполнений призматических шпонок (вид сверху)

Шпоночное соединение включает в себя минимум три посадки: вал-втулка (центрирующее сопряжение) шпонка-паз вала и шпонка-паз втулки.
Точность центрирования деталей в шпоночном соединении обеспечивается посадкой втулки на вал. Это обычное гладкое цилиндрическое сопряжение, которое можно назначить с очень малыми зазорами или натягами, следовательно – предпочтительны переходные посадки.

Возможно еще одно сопряжение – по длине шпонки, если призматическую шпонку с закругленными торцами закладывают в глухой паз на валу.

Глубина паза у вала под шпонку задается размером l , (предпочтительно) или d-t1 , глубина паза у отверстия под шпонку — размером t2 или D+t2 (рис. 2).

Шпоночное соединение вала с шестерней

Рис. 2. Параметры шпоночного соединения

Размеры шпонок изготавливаются: по ширине b шпонки (рис. 2) с полем допуска h9 , по высоте h шпонки с полем допуска h11 (при высоте шпонки 2 . 6 мм — по B9 ), по длине l шпонки с полем допуска h14 .
Такое назначение полей допусков на размеры призматических шпонок делает возможным их централизованное изготовление независимо от посадок.

Все виды шпоночных соединений образуются в системе вала. Вид соединения выбирается в зависимости от его функционального назначения с учетом технологии сборки. Для предпочтительного применения стандартом предусмотрено три вида соединения (рис. 3):

  • Свободное — соединение с гарантированным зазором для возможности перемещения втулки вдоль вала со шпонкой. Соединение подвижное. Для ширины паза на валу задается поле допуска Н9 , для ширины паза втулки — Z10 .
  • Нормальное — соединение с переходной посадкой, с большей вероятностью в получении зазора, не требующее частых разборок. Соединение неподвижное. Для ширины паза на валу задается поле допуска N9 , для ширины паза втулки — J9 .
  • Плотное — соединение с переходной посадкой, с приблизительно равной вероятностью получения зазоров и натягов, применяющееся при редких разборках и реверсивных нагрузках. Соединение неподвижное. Для ширины паза вала и втулки задается одно поле допуска H9 .

Стандартом установлены поля допусков по ширине шпонки и шпоночных пазов b для свободного, нормального и плотного соединений.
Длина пазов вала и отверстия под шпонку изготавливается с полем допуска Z15 , глубина пазов вала и отверстия — с полем допуска Z12 .
К местам установок шпонок предъявляются дополнительные требования по расположению поверхностей.

Видео:Шпоночные соединения Классификация и виды шпонок Достоинства и недостатки шпоночных соединенийСкачать

Шпоночные соединения Классификация и виды шпонок Достоинства и недостатки шпоночных соединений

Допуски и посадки шлицевых соединений

Основные параметры шлицевых соединений

Шлицевые соединения, как и шпоночные, предназначены для передачи крутящих моментов в соединениях шкивов, муфт, зубчатых колес и других деталей с валами.
В отличие от шпоночных соединений, шлицевые соединения, кроме передачи крутящих моментов, осуществляют еще и центрирование сопрягаемых деталей. Шлицевые соединения могут передавать большие крутящие моменты, чем шпоночные, и имеют меньшие перекосы и смещения пазов и зубьев.
Более подробно о видах шлицевых соединений здесь.

В зависимости от профиля зубьев шлицевые соединения делят на соединения с прямобочным, эвольвентным и треугольным профилем зубьев.

Шлицевые соединения с прямобочным профилем зубьев применяются для подвижных и неподвижных соединений. К основным параметрам относятся:

  • D – наружный диаметр;
  • d – внутренний диаметр;
  • b – ширина зуба.

Читайте также: Подшипники рулевого вала вектра а

По ГОСТ 1139-80* в зависимости от передаваемого крутящего момента установлено три типа соединений – легкой, средней и тяжелой серии.

В шлицевых соединениях с прямобочным профилем зуба применяют три способа относительного центрирования вала и втулки (рис. 3):

  • по наружному диаметру D ;
  • по внутреннему диаметру d ;
  • по боковым сторонам зубьев b .

Шпоночное соединение вала с шестерней

Рис. 3. Способы относительного центрирования шлицевых соединений

Центрирование по наружному и внутреннему диаметрам обеспечивает хорошую соосность деталей при взаимном перемещении. Но центрирование по наружному диаметру, кроме того, применяют и для неподвижных соединений, поскольку в них отсутствует износ от осевых перемещений.

Центрирование по D рекомендуется при повышенных требованиях к соосности элементов соединения, когда твердость втулки не слишком высока и допускает обработку чистовой протяжкой, а вал обрабатывается фрезерованием и шлифуется по наружному диаметру D .
Применяется такое центрирование в подвижных и неподвижных соединениях.

Центрирование по внутреннему диаметру d применяется в тех же случаях, что и центрирование по D , но при твердости втулки, не позволяющей обрабатывать ее протяжкой. Такое центрирование является наименее экономичным.

Центрирование по боковым сторонам зубьев b используют, когда не требуется высокой точности центрирования, при передаче значительных крутящих моментов.
Способ центрирования по боковым поверхностям зубьев b целесообразно, также, применять при передаче знакопеременных нагрузок больших крутящих моментов, а также реверсивном движении.
Этот метод способствует более равномерному распределению нагрузки между зубьями, но не обеспечивает высокой точности центрирования. Применяется реже, так как при этом требует точной обработки шлицевого вала и впадин шлицевой втулки, которая может быть обеспечена у вала шлифованием зубьев, а у втулки только протягиванием отверстия. Применяется, если нужна высокая прочность, а точность центрирования не имеет существенного значения, — например карданные сочленения.

Выбор допусков и посадок шлицевых соединений

В основу построения допусков и посадок шлицевых соединений положена система, обеспечивающая сокращение дорогостоящего инструмента для обработки шлицевых отверстий — протяжек. Поэтому посадки шлицевых соединений с прямобочным профилем зуба строятся по системе отверстия (рис. 4).

Шпоночное соединение вала с шестерней

Рис. 4. Поля допусков шлицевых соединений

Отклонение размеров профиля отверстия и вала отсчитываются от номинальных размеров диаметров D и d и ширины зуба b .
Для обеспечения собираемости шлицевых деталей предусматриваются гарантированные зазоры между боковыми сторонами зубьев и впадин, а также между не центрируемыми поверхностями. Эти зазоры компенсируют погрешности профиля и расположения шлицев вала и впадин втулки.
Поля допусков шлицевых соединений с прямобочным профилем располагаются в зависимости от центрирующего элемента.

Прямобочные шлицевые соединения, как правило, контролируются комплексными проходными калибрами. При этом поэлементный контроль осуществляется непроходными калибрами или измерительными приборами.
В спорных случаях контроль с применением комплексного калибра является решающим.
При использовании комплексных калибров отверстие считается годным, если комплексный калибр-пробка проходит, а диаметры и ширина паза не выходят за установленные верхние пределы; вал считается годным, если комплексный калибр-кольцо проходит, а диаметры и толщина зуба не выходят за установленный нижний предел.

Обозначение на чертежах прямобочных шлицевых соединений валов и втулок должно содержать:

  • букву, соответствующую поверхности центрирования;
  • число зубьев и номинальные размеры d , D и b соединения, вала и втулки;
  • символы полей допусков или посадок диаметров, а также размера b , помещенные после соответствующих размеров.

В обозначении можно не указывать допуски нецентрирующих диаметров.

Допуски и посадки эвольвентных шлицевых соединений

Для повышения долговечности соединений, улучшения центрирования и упрощения фрезерования (применения метода обката одной червячной фрезой при нарезании шлицев одного модуля, но разных чисел зубьев и диаметров) используются шлицевые соединения с эвольвентным профилем зуба.

Однако при закаленных валах и втулках шлицевание зубьев с эвольвентным профилем невыгодно. Кроме того, стоимость протяжки при чистовой обработке выше, чем для зубьев с прямобочным профилем.

Основными преимуществами эвольвентных шлицевых соединений по сравнению с прямобочными являются:

  • более равномерное распределение нагрузки на зубе;
  • высокая прочность;
  • возможность обеспечения повышенной точности, обусловленная высокой точностью червячной модульной фрезы.

На эти соединения распространяется ГОСТ 6033-80, устанавливающий исходный контур; угол наклона профиля зуба — 30°; форму зуба; номинальные диаметры D = 4. 500 мм; модули т = 0,5. 10 мм; число зубьев z = 64. 82; номинальные размеры элементов и измерительные величины по боковым поверхностям зубьев, а также допуски и посадки.

В шлицевых эвольвентных соединениях втулку относительно вала центрируют по:

  • боковым поверхностям зубьев — этот способ получил наибольшее распространение, так как достигается хорошая соосность (в отличие от прямобочных соединений);
  • наружному диаметру — этот способ используется, когда необходима высокая точность вращения деталей, сидящих на шлицевом валу;
  • внутреннему диаметру — этот способ центрирования используется редко из-за технологических трудностей, в том числе из-за малых опорных площадок по впадинам зубьев.

Читайте также: Canon 6317 подшипник тефлонового вала

Основными параметрами, которые обеспечивают взаимозаменяемость шлицевых эвольвентных соединений, являются:

  • номинальный исходный диаметр соединения D ;
  • диаметр окружности впадин втулки Df
  • диаметр окружности вершин зубьев втулки Da
  • модуль m ;
  • толщина шлица вала s и ширина впадины втулки е (как правило, s = е);
  • диаметр окружности вершин зубьев вала da ;
  • диаметр окружности впадин вала df
  • смещение исходного контура шлицев хm .

Допуски и посадки при центрировании по боковым поверхностям зубьев эвольвентных соединений имеют особенность, состоящую в том, что на сопрягаемые размеры толщины зубьев вала s и ширины втулки е установлены два вида допусков:

  • допуск Тs = Те собственно размеров s и е ;
  • суммарный допуск Т , включающий в себя как отклонения размеров s и e , так и отклонение формы и расположения поверхностей профиля зубьев вала и впадин втулки.

Введение таких допусков связано с особенностями контроля шлицевых соединений комплексными калибрами. Величина этих допусков определяется числами — степенями точности, а их расположение относительно номинального размера ( s = е ) на дуге делительной окружности — основными отклонениями.

Контроль размеров шлицевых соединений

Для контроля размеров шлицевой втулки и шлицевого вала применяют поэлементные и шлицевые комплексные калибры. Калибры для контроля внутреннего диаметра втулки и наружного диаметра вала не отличаются от гладких калибров-пробок и калибров-скоб.

Для контроля наружного диаметра D и толщины b зуба вала применяют специальные предельные калибры: листовые двусторонние пробки, неполные пробки, пазовые калибры, калибры-скобы и калибры — скобы для контроля толщины зубьев. Широко применяются комплексные шлицевые калибры, которыми контролируют не только размеры шлицевых валов и втулок, но и отклонения формы и расположения поверхностей.

Видео:Детали машин. Лекция 5.4. Шлицевые и шпоночные соединенияСкачать

Детали машин. Лекция 5.4.  Шлицевые и шпоночные соединения

Детали машин

Видео:Шпоночное соединениеСкачать

Шпоночное соединение

Шпоночные соединения

Характеристика шпоночных соединений

Шпоночное соединение образуют вал, шпонка и ступица колеса (шкива, звездочки и т. п.) .
Шпонка представляет собой стальной брус, устанавливаемый в пазы вала и ступицы. Она служит для передачи вращающего момента от вала к ступице и наоборот.
Основные типы шпонок стандартизированы.

Шпоночные пазы на валах получают фрезерованием дисковыми или концевыми фрезами, в ступицах – протягиванием (см. рис. 1) .

Достоинства шпоночных соединений – простота конструкции, вследствие чего их широко применяют во всех областях машиностроения.

Недостатки – шпоночные пазы ослабляют вал и ступицу насаживаемой на вал детали. Ослабление вала обусловлено не только уменьшением его сечения, но, главное, значительной концентрацией напряжений изгиба и кручения, вызываемой шпоночным пазом.

Шпоночное соединение трудоемко в изготовлении: при изготовлении паза концевой фрезой, требуется ручная пригонка шпонки по пазу; при изготовлении дисковой фрезой – крепление шпонки в пазу винтами от возможных осевых перемещений.

Шпоночное соединение вала с шестерней

Классификация шпоночных соединений

Шпоночные соединения подразделяют на ненапряженные и напряженные.
Ненапряженные соединения получают при использовании призматических и сегментных шпонок. При сборке этих соединений в деталях не возникает монтажных напряжений. Для обеспечения центрирования и исключения контактной коррозии (фретинг-коррозии) ступицы устанавливают на валы с натягом.

Напряженные соединения получают при применении клиновых и тангенциальных шпонок (рис. 2) . При сборке таких соединений возникают предварительные (монтажные) напряжения. Тангенциальные шпонки являются разновидностью клиновых шпонок. При запрессовке клиновых шпонок в соединении возникают распорные радиальные силы, что приводит к появлению дисбаланса.
Клиновые шпонки в настоящее время применяются редко, поэтому их методика расчета на прочность здесь не рассматривается.

Шпоночное соединение вала с шестерней

По форме различают три основных типа шпонок (кроме клиновых и тангенциальных, рис. 2) – призматические , сегментные и круглые .

Призматические шпонки (рис. 3) изготавливают в нескольких исполнениях – с плоскими и скругленными торцами. Округление торцов шпонки облегчает монтаж конструкции.
Шпонки с плоскими торцами устанавливают вблизи деталей (концевых шайб, колец и т. п.) , препятствующих ее осевому перемещению, поскольку призматическая шпонка не препятствует осевому перемещению деталей вдоль вала.
Иногда для фиксации от осевого смещения призматические шпонки фиксируют распорными втулками или установочными винтами.

Шпоночное соединение вала с шестерней

Сегментные шпонки (рис. 3) , как и призматические, работают только боковыми гранями. Их применяют при передаче относительно небольших вращающих моментов, так как глубокий паз значительно ослабляет вал.
Сегментные шпонки и пазы для них просты в изготовлении и удобны для монтажа и демонтажа. Глубокая посадка шпонки обеспечивает ей устойчивое положение.
В отличие от призматических шпонок, сегментные шпонки не нуждаются в дополнительной фиксации от осевого перемещения.

Материал шпонок и допускаемые напряжения

Стандартные шпонки изготовляют из специального сортамента среднеуглеродистой чистотянутой стали с σв ≥ 600 МПа – чаще всего из сталей марок Ст6, 45, 50.

Допускаемые напряжения смятия [σ]см для шпоночных соединений зависят от материала ступицы (вал, как правило, изготовляют из стали) , типа посадки ступицы и характера нагрузки.

Так, неподвижное соединение при стальной ступице допускает напряжение 140…200 МПа, при чугунной ступице – 80…110 МПа. Большие напряжения допускаются при постоянной нагрузке, меньшие – при переменной.

Читайте также: Асинхронный двигатель с валом 14мм

Допускаемое напряжение при срезе шпонок [τ]ср = 70…100 МПа (Н/мм2). Большие допускаемые напряжения принимают для постоянной нагрузки.

Расчет шпоночных соединений

Основным критерием работоспособности шпоночных соединений является прочность.
Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют расчетом на прочность.
Характер напряжений, возникающих в шпоночном соединении во время работы, показан на рис. 4 . Шпонки работают на смятие и срез, а боковые стенки пазов на валах и в ступицах — на смятие.

Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений – расчет на смятие шпонки. Проверку шпонок на срез в большинстве случаев не производят.

При расчете условно принимают, что напряжение σсм смятия распределяются равномерно по площади контакта боковых граней шпонок и шпоночных пазов, а прочность материала, характер соединения, режим работы учитываются при выборе допускаемого напряжения [σ]см .

Шпоночное соединение вала с шестерней

Проверочный расчет соединения призматической шпонкой выполняют по условию прочности на смятие (см. рис. 4):

где: F1 – окружная сила, передаваемая шпонкой, Асм – площадь смятия шпонки (мм 2 ).

где: T = передаваемый момент (Нм); d – диаметр вала (мм).

На смятие рассчитывают выступающую из вала часть шпонки, которая имеет меньшую площадь смятия.
При определении площади смятия Асм учитывают размер фаски f , который для стандартных шпонок примерно равен 0,06h (здесь h – общая высота шпонки) .

Шпонка с фаской f = 0,06h имеет расчетную площадь Асм смятия:

где: t1 – глубина шпоночного паза на валу (мм); lр – расчетная длина шпонки (мм).
Для шпонок с плоскими торцами lp = l , со скругленными торцами lp = l – b .

Подставив значения F1 и Асм в формулу проверочного расчета, получим:

В проектировочном расчете соединения, после выбора размеров b и h поперечного сечения шпонки по стандарту, определяют расчетную рабочую длину lp :

Длину ступицы lст принимают на 8…10 мм больше длины шпонки. Если длина ступицы больше величины 1,5d , то шпоночное соединение целесообразно заменить на шлицевое или соединение с натягом, чтобы избежать значительной неравномерности распределения напряжений по длине шпонки.

Проверочный расчет соединения сегментной шпонкой выполняют на смятие:

где: lp ≈ l – рабочая длина шпонки (мм); (h – t) — рабочая глубина паза в ступице (мм).

Поскольку сегментные шпонки выполняются узкими, их, в отличие от призматических, проверяют на срез.
Условие прочности при срезе:

где: b – ширина шпонки (мм); [τ]сp – допускаемое напряжение на срез.

Рекомендации по конструированию шпоночных соединений

При проектировании и конструировании шпоночных соединений следует придерживаться следующих рекомендаций, основанных на опыте эксплуатации и аналитических выводах:

  • Перепад диаметров ступеней вала с призматическими шпонками назначают из условия свободного прохода детали большего посадочного диаметра без удалении шпонки из паза на участке меньшего диаметра.
  • При наличии нескольких шпоночных пазов на валу их располагают на одной образующей.
  • Из удобства изготовления рекомендуют для разных ступеней одного и того же вала назначать одинаковые по сечению шпонки, исходя из ступени меньшего диаметра.
    Прочность шпоночных соединений при этом оказывается вполне достаточной, поскольку окружные силы на разных участках вала обратно пропорциональны диаметру, поэтому на участках с большим диаметром окружная сила будет меньше.
  • При необходимости установки двух сегментных шпонок их ставят вдоль вала в одном пазу ступицы. Постановка нескольких шпонок в одном соединении сильно ослабляет вал, поэтому рекомендуется в этом случае перейти к шлицевому соединению.

Пример проектировочного расчета шпонки

Шпоночное соединение вала с шестерней

Задача Выбрать тип стандартного шпоночного соединения стального зубчатого колеса со стальным валом и подобрать размеры шпонки.
Диаметр вала d = 45 мм .
Соединение передает вращающий момент Т = 210 Нм при спокойной нагрузке.

Решение
Выполняем проектировочный расчет, на основании которого подбираем нужную шпонку.

Выбор соединения:

Для соединения вала с колесом принимаем широко распространенную призматическую шпонку со скругленными торцами ( исполнение I) .

Расчетные размеры шпонки и паза на валу:

По таблице стандарта, устанавливающей зависимость между диаметром вала, размером сечения шпонки и глубиной паза, принимаем для d = 45 мм :

b = 14 мм ; h = 9 мм , глубина паза на валу t1 = 5,5 мм .

Допускаемые напряжения:

По таблице стандарта, устанавливающей зависимость допускаемого напряжения от типа шпоночного соединения и материала ступицы, принимаем для стальной ступицы, неподвижного соединения и спокойной нагрузки:

Расчетная длина шпонки:

lp = 2×10 3 Т / d(0,94h – t1) [σ]см = (2000×210) / 45(0,94×9 – 5,5)190 = 16,6 мм .

5. Длина шпонки с закругленным торцом: l = lp + b = 16,6 + 14 = 30,6 мм .
В соответствии со стандартом принимаем длину шпонки l = 32 мм .

6. Длина ступицы колеса: lст = l + 10 мм = 32 + 10 = 42 мм , что допустимо.

  • Свежие записи
    • Чем отличается двухтактный мотор от четырехтактного
    • Сколько масла заливать в редуктор мотоблока
    • Какие моторы бывают у стиральных машин
    • Какие валы отсутствуют в двухвальной кпп
    • Как снять стопорную шайбу с вала
    • Правообладателям
    • Политика конфиденциальности

    Механика © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    💥 Видео

    Внутренний шпоночный паз без долбежного станка.Скачать

    Внутренний шпоночный паз без долбежного станка.

    5.1 Шпоночные и шлицевые соединенияСкачать

    5.1 Шпоночные и шлицевые соединения

    шпонка валаСкачать

    шпонка вала

    Шпоночное и шлицеовое соединенияСкачать

    Шпоночное и шлицеовое соединения

    Извлечение шпонки из шпонпаза вала.Скачать

    Извлечение шпонки из шпонпаза вала.

    Фрезеровка вала под шпонку. Шпоночный пазСкачать

    Фрезеровка вала под шпонку. Шпоночный паз

    Долбление шпоночного паза на долбежном станкеСкачать

    Долбление шпоночного паза на долбежном станке

    шпонка разбила коленвал что делать?Скачать

    шпонка разбила коленвал что делать?

    Как зафиксировать шкив без шпонки.Скачать

    Как зафиксировать шкив без шпонки.

    Как сделать шпоночный паз на ТОКАРНОМ СТАНКЕ 1К62Скачать

    Как сделать шпоночный паз на ТОКАРНОМ СТАНКЕ 1К62

    Фрезерование шпоночного паза на валуСкачать

    Фрезерование шпоночного паза на валу

    Шпоночный паз больше не проблемаСкачать

    Шпоночный паз больше не проблема

    Шпоночная стальСкачать

    Шпоночная сталь

    Изготовление Вал шестерниСкачать

    Изготовление Вал шестерни

    660 Ремонт шпоночной канавкиСкачать

    660 Ремонт шпоночной канавки

    Как сделать ШПОНОЧНЫЙ паз на ВАЛУ? Станок 1к62Скачать

    Как сделать ШПОНОЧНЫЙ паз на ВАЛУ?  Станок 1к62

    Единственно правильный способ посадить шестерню на вал с натягомСкачать

    Единственно правильный способ посадить шестерню на вал с натягом
Поделиться или сохранить к себе:
Технарь знаток